AesPA-Net: Aesthetic Pattern-Aware Style Transfer Networks

Kibeom Hong1,3,4 Seogkyu Jeon1 Junsoo Lee4 Namhyuk Ahn4 Kunhee Kim2,4
Pilhyeon Lee1 Daesik Kim4 Youngjung Uh1 Hyeran Byun1*
1Yonsei University 2KAIST AI 3SwatchOn 4NAVER WEBTOON AI

A. Additional qualitative results

We provide additional qualitative results with zoomed patches for better comparisons with previous state-of-the-art [6, 5, 8, 4, 7, 1, 3]. As shown in Fig. 2, our AesPA-Net outperform previous works. Moreover, we present the further qualitative comparisons with other recent AST methods such as CAST [12], AesUST [10] and StyleFormer [11], as well as patch-swapping based methods including AvatarNet [9] and style-swap [2] in Fig. 3.

In addition, we conduct artistic style transfer on high-resolution images (4752×3168) which are shown in Fig. 4. Also in Fig. 5, we depict the results of our stylization transformer with the improved computation efficiency by replacing WCT [6] with AdaIN [5].

Lastly, we provide additional qualitative comparison results for demonstrating the effectiveness of improved attention module in Fig. 6.

B. Analysis of probability p

In this section, we conduct ablation studies to verify the effect of probability p on the proposed pattern repeatability α_{style} by varying the value from 0.01 to 1.0. As shown in Fig. 1, α_{style} could capture the rhythm of pattern in each image even with few patch samples. Note that we set the probability p as 0.1 throughout the experiments for efficient calculation.

Figure 1. Ablation study of probability p for calculating the proposed pattern repeatability α_{style}.
Figure 2. Qualitative comparisons with state-of-the-art AST methods.
Figure 3. Qualitative comparisons with other recent AST methods [12, 10, 11] and patch-swapping based methods [9, ?].
Figure 4. Qualitative results with high resolution (4752×3168). The red box indicates the artistic reference images, and the green box depicts the input content images.

Figure 5. Qualitative results with the other global statistic-based transformation i.e., AdaIN[5].
Figure 6. Visualization of attended region and stylized results given a pair of content and style images.
References

[7] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian Li, and Errui Ding. Adaatttn: Revisit attention mechanism in arbitrary neural style transfer. In ICCV, pages 6629–6638, 2021. 1

