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1. More implementation details
The keypoint and dense motion estimation follow

FOMM [10]. Specifically, we extract each frame from the
driving video as a driving image and input it into the MCNet
model with the source image. The source image and driv-
ing video share the same identity in the training stage, so the
sampled driving frame can be used as the ground-truth of a
generated source-identity image. To optimize the training
objectives, we set λrec = 10, λeq = 10, λdist = 10, and
λcon = 10. The number of keypoints is set to 15, which is
the same as that of DaGAN [5]. In the training stage, we
employ 8 RTX 3090 GPUs to run the model for 100 epochs
in an end-to-end manner, and it costs about 12 hours in to-
tal. The number of layers (i.e. N ) of the encoder and the de-
coder is both set as 4, and the number of keypoints (i.e. K)
is set as 15 following [5]. We set the size of the proposed
meta memory as 512× 32× 32, i.e. Cm = 512, Hm = 32
and Wm = 32. In the motion-based warping process, for
any Fi

e that has a different spatial size to the motion flow,
we employ bilinear interpolation to adjust the spatial size of
the motion flow.

2. Network architecture details of MCNet
The keypoint detector receives an image as input and

outputs the K keypoints {xi, yi}Ki=1. The structure of the
keypoint detector is illustrated in Fig. 1. Here, we adopt the
Taylor approximation as FOMM [10] and DaGAN [5] to
compute the motion flow. Thus, the motion estimation is not
our focus and we mainly focus on designing our meta mem-
ory and its usage for our talking head generation framework.

3. More details on optimization losses
Perceptual Loss Lp. Perceptual loss is a popular objective
function in image generation tasks. As introduced in Da-

*Corresponding author

Do
w
nB
lo
ck
2d
(c
=
64
,/
2)

Do
w
nB
lo
ck
2d
(c
=
12
8,
/2
)

Do
w
nB
lo
ck
2d
(c
=
25
6,
/2
)

Do
w
nB
lo
ck
2d
(c
=
51
2,
/2
)

Do
w
nB
lo
ck
2d
(c
=
10
24
,/
2)

Up
Bl
oc
k2
d(
c
=
51
2,
×
2)

Up
Bl
oc
k2
d(
c
=
25
6,
×
2)

Up
Bl
oc
k2
d(
c
=
12
8,
×
2)

Up
Bl
oc
k2
d(
c
=
64
,×
2)

Up
Bl
oc
k2
d(
c
=
32
,×
2)

7×
7
−
Co
nv

(a) Keypoint Detector

3×3 − Conv,BN,ReLU

Pooling	/2

(b) DownBlock2d

3×3 − Conv,BN,ReLU

Interpolation	×2

(c) UpBlock2d

Figure 1: Detailed structure of the keypoint detector. c in
each layer indicates the number of output channels.

GAN [5], a generated image and its ground-truth, i.e. the
driving image in the training stage, is downsampled to 4
different resolutions (i.e. 256 × 256, 128 × 128, 64 × 64,
32 × 32), respectively. Then we utilize a pre-trained VGG
network [12] to extract the features from images at each res-
olution. To simplify, we denote R1, R2, R3, R4 as the fea-
tures of generated images in different resolutions, respec-
tively, and G1, G2, G3, G4 for the 4 different resolutions
of the ground-truth. Then, we measure the L1 distance be-
tween the ground-truth and the generated image by the Per-
ceptual loss defined as follows:

Lp =

4∑
i=1

L1(Gi, Ri) (1)

Equivariance Loss Leq . We employ this loss to maintain
the consistency of the estimated keypoints in the images af-
ter different augmentations. Per FOMM [10], given an im-
age I and its detected keypoints {Xi}Ki=1 (Xi ∈ R1×2), we
first perform a known spatial transformation T on images
I and keypoints {Xi}Ki=1, resulting in a transformed image
IT and transformed keypoints {XT

i }Ki=1. Then, we detect
keypoints on the transformed image IT , which are denoted
as ({XIT ,i}Ki=1). We employ the equivariance Loss on the



source image and driving image:

Leq =

K∑
i=1

||XT
i −XIT ,i||1 (2)

Keypoint distance loss Ldist. We employ the keypoint dis-
tance loss as in [5] to penalize the model if the distance
between any two keypoints is smaller than a user-defined
threshold. Thus, the keypoint distance loss can make the
keypoints much less crowded around a small neighbour-
hood. In one image, for every two keypoints Xi and Xj ,
we then have:

Ldist =

K∑
i=1

K∑
j=1

(1− sign(||Xi −Xj ||1 − α)), i ̸= j, (3)

where the sign(·) represents a sign function and the α is the
threshold of the distance, which is 0.2 in our work.

4. More details on experiments

4.1. Evaluation Metrics

We mainly consider four important metrics that are
widely used in the talking head generation field, i.e., AED,
ADK, PRMSE, and AUCON. Specifically, Average eu-
clidean distance (AED) is an important metric that mea-
sures identity preservation in reconstructed video/image.
In this work, we use OpenFace [1] to extract identity em-
beddings from the reconstructed face and the ground truth
frame. The MSE loss is used to measure their difference.
Average keypoint distance (ADK). ADK evaluates the dif-
ference between landmarks of the reconstructed faces and
the ground truth frames. We extract facial landmarks using
a face alignment method [2]. We compute an average dis-
tance between the corresponding keypoints. Thus, the AKD
mainly measures the ability of the pose imitation.
The root mean square error of the head pose angles
(PRMSE). In this work, we utilize the Py-Feat toolkit1 to
detect the Euler angles of the head pose, and then evaluate
the pose difference between different identities.
The ratio of identical facial action unit values (AUCON).
We first utilize the Py-Feat toolkit to detect the action units
of the generated face and the driving face. Then we can
calculate the ratio of identical facial action unit values as
the AUCON metric.

4.2. Additional experimental results

Positional Encoding for keypoints. The positional encod-
ing method shows its strong power in transformers [13, 6, 4]
and NeRFs [8, 7, 9]. Therefore, we consider applying

1https://py-feat.org

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
Ous w/ pe(10) 82.4 31.91 0.175 0.0334 1.221 0.107
Ous w/ pe(20) 69.4 30.03 0.269 0.0593 5.544 0.268

MCNet 82.5 31.94 0.174 0.0331 1.203 0.106

Table 1: The results of applying positional encoding func-
tion on keypoints. “pe(10)” means that we set the output
dimension control factor L of positional encoding function
as 10, and 20 for “pe(20)”.

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
MCNet (IICM w/o Fi

proj) 82.3 31.89 0.175 0.0336 1.237 0.110
MCNet (IICM w/o keypoints) 82.4 31.93 0.175 0.0333 1.227 0.109
MCNet (MCM w/o f1

dc, f2
dc) 82.2 31.89 0.176 0.0336 1.246 0.112

MCNet (single layer) 82.3 31.90 0.175 0.0334 1.235 0.108

MCNet 82.5 31.94 0.174 0.0331 1.203 0.106

Table 2: Ablation studies. ‘IICM w/o Fi
proj” and “IICM

w/o keypoints” represent that IICM does not use the pro-
jected feature Fi

proj or keypoints as input (see Fig. ??),
respectively, to encode implicit identity representation.
“IICM w/o f1

dc, f2
dc” indicates that we replace the f1

dc and
f2
dc with two normal convolution layers to produce the key

and the value in MCM.

the positional encoding function2 on the keypoints, to pro-
duce the implicit identity representation conditioned mem-
ory. We show the results in Table.1. From Table 1, we
observe that when we apply the position encoding function
on keypoints, it cannot bring improvements, and even de-
grades the model performance if we set the L as 20. Since
the keypoints are utilized to estimate the motion flow in the
dense motion network, the Euclidean distance between any
two keypoints is physically meaningful. Therefore, we sup-
pose that employing the positional encoding on keypoints
may affect the motion flow estimation, resulting in an un-
satisfactory generation.
The input elements in IICM. We also conduct experi-
ments to investigate the usage of intermediate feature Fi

proj

(“IICM w/o Fi
proj”) and keypoints (IICM w/o keypoints).

The results are shown in Table 2. The results in the table
indicate that these two items are both critical for the gen-
eration of the implicit-identity representation conditioned
memory bank. We can obtain the best results when we com-
bine them together.
Single layer vs. multiple layers. In our work, we deploy
the IICM and MCM in each layer to obtain the best results.
Also, we investigate the performance of using IICM and
MCM in the first layer only. The results “MCNet (single
layer)” show that the single layer can also obtain similar
good results, which can verify the effectiveness of our de-
signed memory mechanism.
The dynamic convolution in MCM. Besides, we also con-

2Here, we use the implementation of
https://github.com/yenchenlin/nerf-pytorch



duct an ablation study on the dynamic convolution layer in
the memory compensation module. We can observe that the
dynamic convolution layer can contribute to the final per-
formance, especially for the AKD and AED.

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
FOMM [10] 77.19 30.71 0.257 0.0513 1.762 0.212
MRAA [11] 78.07 30.89 0.262 0.0511 1.796 0.213
DaGAN [5] 79.02 30.81 0.250 0.0483 1.865 0.341
TPSM [15] 78.22 30.63 0.254 0.0527 1.703 0.210

Ours w/o IICM 78.63 31.02 0.250 0.0481 1.726 0.199
Ours 79.86 31.18 0.244 0.0470 1.699 0.186

Table 3: State-of-the-art comparison on VoxCeleb2 dataset.

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
FOMM [10] 76.94 31.87 0.155 0.0363 1.116 0.092
MRAA [11] 79.36 32.32 0.156 0.0331 1.039 0.100
DaGAN [5] 82.29 32.29 0.136 0.0304 1.020 0.083
TPSM [15] 86.05 32.85 0.114 0.0264 1.015 0.072

Ours w/o IICM 85.90 33.03 0.114 0.0243 1.023 0.068
Ours 86.45 33.60 0.112 0.0238 0.998 0.064

Table 4: State-of-the-art comparison on HDTF dataset.

More datasets for evaluation. To fully verify the superi-
ority of our method, we also compare it with other state-of-
the-art methods on two other large-scale datasets, i.e. Vox-
Celeb2 [3] and HDTF [14]. We report the results in Table 3
and Table 4. From these two tables, we can observe that our
method can still obtain the best results compared with the
SOTA methods3. These results clearly confirm the superi-
ority of our designed method.
Idenetity Preservation. In this section, we reorganize the
voxceleb1 dataset and divide it into a training set and a test
set. These two sets have the same identity space. That
is, the identities of test videos also appear in the training
videos. We select 500 videos as the test set and the rest
as the training set. The experimental results are shown in
Table 5. We can observe that our method obtains higher
performance under the setting of the testing identities as a
part of the training corpus. One possible reason is that our
global face meta-memory is learned from the identities in
the training set. In this way, it can better compensate for the
facial details of those seen identities.

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
Identities not in the training set 82.5 31.94 0.174 0.0331 1.203 0.106
Identities in the training set 83.6 32.38 0.163 0.0319 1.164 0.102

Table 5: Comparison of different variants on HDTF dataset.

Video generation demo. We also provide several video
generation demos to show a more detailed comparison qual-

3These compared methods have officially released code for us to test
on these two datasets.

itatively with the most competitive methods in the litera-
ture. From the demo videos, we can observe that our pro-
posed memory compensation network can compensate the
regions that do not appear in the source image, with sig-
nificantly better results than other methods (e.g. the ear re-
gion in demo2). These demos are attached in Supplemen-
tary Material.
Comparison on tasks in other domains. To better verify
the generalization ability of our method, we also train our
method on TED-talks dataset [11], because the human body
is also symmetrical and highly structured. We report the re-
sults in Table 6. From the Table 6, our method still obtain
the best results among all the compared methods. This gen-
eralization experiment verifies that our meta-memory can
learn the symmetrical and structured face information to in-
paint the generated image. As shown in Fig. 2, our method
yields high-quality body details and learns a memory bank
with rich and representative body information, which is
very useful for the full-body generation.

Model L1 ↓ (AKD ↓, MKR ↓) AED ↓
FOMM [10] 0.033 (7.07, 0.014) 0.163
MRAA [11] 0.026 (4.01, 0.012) 0.116
TPSM [15] 0.027 (3.39, 0.007) 0.124
Ours 0.023 (2.52, 0.006) 0.101

Table 6: State-of-the-art comparison on TED-talks dataset.

Source Driving TPSM [48] OursMeta Memory

Figure 2: Comparison with TPSM on full-body TED-talks
dataset.

Model SSIM (%) ↑ PSNR ↑ LPIPS ↓ L1 ↓ AKD ↓ AED ↓
size = 16 82.3 31.83 0.176 0.0338 1.230 0.112
size = 64 82.1 31.75 0.176 0.0343 1.244 0.111
Ours (size = 32) 82.5 31.94 0.174 0.0331 1.203 0.106

Table 7: Ablation study on different memory bank sizes.

The different sizes of the memory bank. We show the
ablation studies in Tab. 7 to inverstigate the effectiveness
of different sizes of the memory bank. As can be seen in
Tab. 7, the size is not sensitive to generation performance.
We obtain the best generation results with the size of 32,
which is used for all the experiments in the paper.
Meta memory visualization. In this section, we show all
the channels of our learned meta-memory in Fig. 3 for bet-
ter understanding. To better show the details, we also vi-
sualize some channels in Fig. 4 in high resolution. These



visualizations demonstrate the meaningful facial priors are
effectively learned in the meta-memory.

Figure 3: Visualization of randomly selected channels of
the meta memory Mo.

More qualitative ablation studies. To better show that
our designed implicit identity representation conditioned
memory compensation network brings improvements, we
present more qualitative results for ablation studies in Fig. 5
and Fig. 6. The effectiveness can be easily observed from
the qualitative examples shown in the tables.
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[1] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe

Morency. Openface: an open source facial behavior anal-
ysis toolkit. In WACV, 2016. 2

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem? (and a
dataset of 230,000 3d facial landmarks). In ICCV, 2017. 2

[3] J. S. Chung, A. Nagrani, and A. Zisserman. Voxceleb2: Deep
speaker recognition. In INTERSPEECH, 2018. 3

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2

[5] Fa-Ting Hong, Longhao Zhang, Li Shen, and Dan Xu.
Depth-aware generative adversarial network for talking head
video generation. In CVPR, 2022. 1, 2, 3

[6] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2

[7] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 2

[8] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[9] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, 2021. 2
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Figure 4: Visualization of all the channels of the meta memory Mo.



Source Driving Baseline Baseline + MCM Ours

Figure 5: Qualitative ablation studies in VoxCeleb1 dataset. The memory compensation module (MCM) and implicit identity
representation conditioned memory module (IICM) can obtain improvements.



Source Driving Baseline Baseline + MCM Ours

Figure 6: Qualitative ablation studies in VoxCeleb1 dataset. The memory compensation module (MCM) and implicit identity
representation conditioned memory module (IICM) can obtain improvements.


