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In this document, we provide additional details of DDPM [3], implementation details of our method, more analyses and
results, and the human evaluation protocol. We also discuss the limitations and future work at the end.

A. Denoising Diffusion Probabilistic Models
DDPM [6] is a generative model that generates an image from white noise with iterative denoising steps. Given an image

x0 and a variance schedule βt for an arbitrary timestep t ∈ {1, 2, . . . , T}, the forward process of DDPM is defined as a
Markov process of the form:

q(xt+1|xt) = N (xt+1;
√
1− βtxt, βtI). (1)

Note that we can directly get xt from x0 in the closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1− βt, and ᾱt =
∏t

i=1 αi. Similarly, the reverse process is defined as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)I), (3)

where µθ and Σθ denote neural networks with parameter θ.
For the training phase, with Σθ fixed to a constant σ2

t = βt as in DDPM, pθ(xt−1|xt) is compared with the following
forward posterior:

q(xt−1|x0,xt) = N (xt−1; µ̃t(x0,xt), β̃tI), (4)

where µ̃t =
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt, and β̃t = 1−ᾱt−1

1−ᾱt
βt. However, instead of directly comparing µθ to µ̃t, Ho et

al. [6] discover that it is beneficial to optimize ϵθ with the following simplified objective after reparameterization:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), (5)

Lsimple = Ex0,t,ϵ[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2]. (6)

For sampling xt−1 ∼ pθ(xt−1|xt), we can compute the following from xT to x0:

xt−1 =
1√
ᾱt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz, (7)

where z ∼ N (0, I). Rewriting Eq. 5, we can get x̂0 which is a prediction of x0 at each timestep with the following formula:

x̂0 = (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt. (8)



B. Additional Implementation Details
B.1. Environmental setting

For the experiments, we use two servers of 8 NVIDIA GeForce RTX 3090 GPUs each to sample from the pre-trained
models of ADM [3], IDDPM [9], Stable Diffusion v1.4 [12], and DiT [11]. We build upon the PyTorch [10] implementation
of these models, taking all the weights for our experiments from their publicly available repository.

B.2. Selective blurring

In practice, we efficiently implement selective blurring in Sec. 5.2. At the first step, we blur the intermediate reconstruction
x̂0 of xt [6]. Then, we apply masks 1−Mt and Mt on x̂0 and the blurred version of x̂0, respectively. Finally, we aggregate
the output and then noise it again with the predicted noise ϵθ(xt) that we use for computing x̂0 above. This process ends up
producing the same x̂t as Eq. 15 in the main paper.

B.3. Combination of SAG and CFG

Naı̈vely, in order to combine SAG with CFG [7] in Stable Diffusion [12] and DiT [11], we have to compute SAG through
the conditional and unconditional models, which requires us four feedforward steps. In practice, the guided prediction of
noise can be efficiently calculated as follows:

ϵ̃(xt) = ϵθ(xt, c) + sc(ϵθ(xt, c)− ϵθ(xt)) + ss(ϵθ(xt)− ϵθ(x̄t)), (9)

where sc and ss denote the scales of CFG and SAG, respectively, and c denotes a text prompt.

B.4. Hyperparameter settings

In Table 1, we report our hyperparameter settings for our experiments. In the ablation studies in the main paper, we set
the other parameters to the constants in Table 1, while testing the ablated parameter. Note that σ is dependent on the input
resolution.

Model
Self-attention Gaussian-blur

parameter parameter
Guidance scale Threshold Layer σ

ADM [3]

ImageNet 256×256
0.5, 0.8 1.0 Output 2 9

(unconditional)

ImageNet 256×256
0.2 1.0 Output 2 9

(conditional)

LSUN Cat 256×256 0.05 1.0 Output 2 9

LSUN Horse 256×256 0.01 1.0 Output 2 9

ImageNet 128×128 0.1 1.0 Output 8 3

IDDPM [9]
ImageNet 64×64

0.05 1.0 Output 7 1
(unconditional)

Stable Diffusion [12] 0.75, 1.0 1.0 Middle 1

DiT [11] 0.005 1.0 13th block 1

Table 1: Hyperparameter settings.
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Figure 1: Comparison between self-attention masks of DINO [1] and ADM [3]: (a) the self-attention masks extracted
from DINO [1], (b) the self-attention masks extracted from ADM [3].
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(a) Frequency-magnitude plot of
8×8 patches
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(b) Frequency-magnitude plot of
16×16 patches
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(c) Frequency-magnitude plot of
32×32 patches
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Figure 2: Frequency analysis of the self-attention masks: (a), (b) and (c) show the frequency-magnitude graphs of 8×8,
16×16, and 32×32 patches, respectively. ψ denotes the masking threshold. (d) is a 3D visualization that shows the percentage
difference of magnitude between masked and non-masked patches in the frequency domain regarding the 32×32 patches.

C. Additional Analyses and Results

C.1. Exploring the self-attention in diffusion models

We show the visualizations of self-attention maps in the 8×8, 16×16, and 32×32 resolutions of the U-Net [13] of ADM [3]
in Fig. 5. The attention maps at t = 0, 49, 99, 149, 199, 249 are visualized at each row in order, and the layers are aligned left
to right. In this visualization, can see that the attention maps at the intermediate timesteps capture the structure of generated
images. Also, we extract the self-attention masks from the different heads and layers from the U-Net and visualize them in
Fig. 6 and Fig. 7. Average in this figure means the obtained masks after averaging attention maps of the four heads. Moreover,
we compare the self-attention masks of ADM with those of DINO [1] in Fig. 1. Compared to the attention masks of DINO,
those of ADM are more attending to multiple objects and high-frequency details of the generated images where diffusion
models have to elaborate.

Based on the observation, we are interested in two aspects that the self-attention of diffusion models attends to: the
frequency and the semantics of the samples. Therefore, we first investigate how the self-attention maps correlate with
frequency by comparing the frequency spectra of patches with high attention scores to those of all patches. We observe that
high-attention patches contain more high-frequency details (Fig. 2). We then evaluate how the self-attention maps align with
foreground objects (Table 2 and Fig. 3) and discover that they capture some semantic information at all resolutions.

C.2. Additional ablation studies

We conduct experiments on the threshold of self-attention masking that affects the ratio of the blurred region with 10k
samples. We test the thresholds of 0.7, 1.0, and 1.3. As shown in Table 3, the highest metrics are obtained when the threshold



Figure 3: Visualization of self-attention masks compared to object masks. Generated images (top row), the object masks
of Mask R-CNN [5] (middle row), and the self-attention masks of unconditional ADM [3] (bottom row).

Patch size ψ Random Self-attn. % Diff.

8×8
1.0 0.16 0.23 + 44%
1.3 0.09 0.14 + 56%

16×16
1.0 0.18 0.25 + 39%
1.3 0.05 0.11 + 120%

32×32
1.0 0.18 0.26 + 44%
1.3 0.04 0.10 + 150%

Table 2: Semantic analysis of the self-attention masks. ψ denotes the masking threshold, and % Diff. denotes the percent-
age difference of the IoU over the random counterpart.

ψ Baseline ψ = 0.7 ψ = 1.0 ψ = 1.3

FID (↓) 5.98 5.67 5.47 5.66
IS (↑) 141.72 148.60 151.12 145.58

Table 3: Ablation study of the masking threshold (ψ). The results are derived from ADM trained on ImageNet 128×128.

Layer Baseline In. 11 In. 8 Mid. Out. 2 Out. 5 Out. 8

FID (↓) 5.98 5.54 5.61 5.63 5.59 5.57 5.47
IS (↑) 141.72 150.07 148.20 143.44 150.62 141.73 151.12

Table 4: Ablation study of the layer where we extract the attention map. The results are derived from ADM trained on
ImageNet 128×128. We denote the middle block as Mid., and the nth layer of the input and output blocks as In. n and Out. n,
respectively.

value is 1.0.
Table 4 shows evaluation results with respect to the attention map extraction layers, evaluated using 10k samples. We

select the last self-attention layers of each resolution from the encoder and decoder, and also include the bottleneck layer that
divides the encoder and decoder. Regardless of the extraction layer, performance consistently improves over the baseline,
while utilizing the self-attention of the final layer yields the best FID and IS results.

C.3. Qualitative results

In addition to the samples in the main paper, we present random samples with SAG from ADM pre-trained with ImageNet
128×128 (Fig. 8), LSUN Cats (Fig. 9), and LSUN Horse (Fig. 10).



Which row do you think shows the better image quality? 1) The top row 2) The bottom row

Figure 4: An example of a question. The participants are not told which row is sampled with our method.

D. Human Evaluation Protocol
For the human evaluation of SAG with samples from Stable Diffusion [12], we generate 500 pairs with the empty prompt

with or without SAG, and the SAG scale is 1.0 for the samples with SAG. Each pair shares the same seed to make it com-
parable. We show 50 participants 2 groups of 4 samples, one with SAG and the other without SAG, and ask the participants
to select a group having higher image quality. An example of a question is in Fig. 4. Neither the pairs are cherry-picked nor
filtered. We also do not perform any post-processing with the responses.

E. Limitations & Future Work
While the increased self-conditioning typically yields results that are more visually appealing to humans, it is important to

consider the perspective that the generated images may lack diversity and novelty, a topic that requires discussion. However,
at the present stage, the impact of SAG can be effectively moderated by controlling its guidance scale, leading to beneficial
applications. Additionally, it requires twice as many feedforward steps, a challenge that is common to CFG [7] and neces-
sitates addressing. A possible solution might involve distilling guidance into diffusion models [8]. This could potentially
lessen the computational cost associated with both SAG and CFG, without sacrificing quality.

Moreover, self-attention-based guidance may be more suitable for discrete diffusion models [14, 4], which directly model
token probabilities instead of approximating them with continuous values. The integration of these models with our method
presents an intriguing topic for future research.
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Figure 5: Attention maps at all the self-attention layers of ADM [3]. In. n, Mid., and Out. n denote the attention map of
the nth block of the input blocks, the middle block, and the nth block of the output blocks, respectively.
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Figure 6: Visualization of self-attention masks from different layers and heads. Each row, top to bottom, corresponds to
8× 8, 16× 16 and 32× 32 self-attention layers, respectively.
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Figure 7: Visualization of self-attention masks from different layers and heads. Each row, top to bottom, corresponds to
the 8× 8, 16× 16 and 32× 32 self-attention layers, respectively.



Figure 8: Uncurated samples with our method. The results are sampled from ADM [3] conditionally pre-trained in
ImageNet [2] 128×128 with self-attention and classifier guidance in combination.



Figure 9: Uncurated samples with our method. The results are sampled from ADM [3] pre-trained in LSUN Cat [15] with
self-attention guidance.



Figure 10: Uncurated samples with our method. The results are sampled from ADM [3] pre-trained in LSUN Horse [15]
with self-attention guidance.
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