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1. Dataset Construction and Annotations
For the class selection, we summarize the classes of LaSOT [6] and VOT-LT 2019 [9]. There are 85 classes in LaSOT

and about 20 classes in VOT-LT 2019. Then we carefully select a set of categories based on the following rules: (1) The
resolution of videos are larger than 720p, (2) The video is representative enough to include at least one attribute demonstrated
in Table 2 of paper. (3) Class of the video is relative to daily life. (4) The total number of videos with this category should be
greater than ten. Based on the four rules, we choose 27 categories. Because VOT-LT and LaSOT are single-object tracking
dataset, LVOS is a mutliple-object. For target selection, we may follow the target object in VOT-LT and LaSOT, or select
different objects as targets.

For the annotation process, because all the masks are obtained by models, we need two-pass manual corrections. During
Step 1 1 FPS automatic sgmentation, we utilize the box of target object in each frame to get segmentation. If the target object
of a video is the same as that in LaSOT or VOT-LT, we use the gropundtruth boxes. Otherwise, we adopt tracking model to
obtain the box of target object in each frame.

2. Training Strategy
Following [20, 10], we divide the training stage into two phases: (1) pretraining on static image datasets [4, 5, 12, 17, 7]

by applying data augmentation such as synthetic deformation with the initial learning rate of 4× 10−4 and a weight decay of
0.03 for 100,100 steps. (2) main training on the VOS datasets [15, 18] with the initial learning rate of 2× 10−4 and a weight
decay of 0.07 for 100,100 steps. AdamW [13] optimizer is adopted for optimization. The batch size is set as 16. Dice loss
[14] and bootstrapped cross entropy loss with equal weighting is used.

Methods Backbone J&F J F FPS

CFBI[19] ResNet101[8] 81.9 79.1 84.6 5.9
LWL[1] ResNet50[8] 81.6 79.1 84.1 13.2
STCN[3] ResNet50[8] 85.4 82.2 88.6 20.2
RDE[10] ResNet50[8] 84.2 80.8 87.5 27.0
XMem[2] ResNet50[8] 86.2 82.9 89.5 22.6
AOT-B[20] MobileNet-V2[16] 82.5 79.7 85.2 29.6
AOT-L[20] MobileNet-V2[16] 83.8 81.1 86.4 18.7

DDMemory MobileNet-V2[16] 84.2 81.3 87.1 28.1

Table 1: Comparisons with state-of-the art models on DAVIS 2017 validation set[15]. Bold and underline denote the best
and second-best respectively in each column.

3. Results on Short-term Videos Validation Sets
We compare our DDMemory with state-of-the-art VOS models on short-term videos validation datasets (DAVIS 2017 [15]

and YouTube-VOS 2018 [18]) in Table 1 and 2. We re-time these models on our hardware (one V100 GPU) for a fair com-
parison. DDMemory exceeds the majority of models and maintains an efficient speed. Despite having higher performance



than DDMemory, XMem and STCN employ a stronger backbone ResNet50 [8], while DDMemory only uses MobileNet-
V2 [16]. Although the segmentation accuracy in short-term videos can be improved by the global temporal information, but
the improvement on short-term videos validation sets is not very obvious. The reason may be that the length of the videos is
relatively short.

Methods Backbone J&F Js Fs Ju Fu FPS

CFBI[19] ResNet101[8] 81.4 81.1 85.8 75.3 83.4 4.0
LWL[1] ResNet50[8] 81.5 80.4 84.9 76.4 84.4 -
STCN[3] ResNet50[8] 83.0 81.9 86.5 77.9 85.7 13.2
RDE[10] ResNet50[8] 81.9 81.1 85.5 84,8 76.2 17.7
XMem[2] ResNet50[8] 85.7 84.6 89.3 80.2 88.7 11.8
AOT-B[20] MobileNet-V2[16] 83.5 82.6 87.5 77.7 86.0 20.5
AOT-L[20] MobileNet-V2[16] 83.8 82.9 87.9 77.7 86.5 16.0

DDMemory MobileNet-V2[16] 84.1 83.5 88.4 78.1 86.5 18.7

Table 2: Comparisons with state-of-the art models on YouTubeVOS-2018 validation set [18]. Bold and underline denote the
best and second-best respectively in each column.
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Figure 1: Qualitative results on LVOS validation and test set. DDMemory performs well on long-term videos.

4. Additional Qualitative Results
We show more qualitative results on LVOS in Figure 1. As demonstrated, our DDMemory can handle many challenging

long-term VOS attributes, such as long-term reappearance, similar objects, occlusion, fast and complex occlusions, low
resolution, and scale variation, etc. In row (a), DDMemory successfully distinguishes the white goldfish with other similar
fishes. In row (b), the two people and umbrellas are not confused with each other in spite of occlusion. In row (c), DDMemory



can re-detect the boat after long-term and frequent disappearance. In row (d), the small white ball is similar to other balls,
and DDMemory still succeeds in tracking and segmenting it. In row (f), DDMemory tracks the motorcycle well despite the
fast motion and large scale variation.

R G L FPS GPU J&F J F
57.4 0.52 44.2 39.0 49.4
55.2 0.62 42.7 37.4 48.0
43.5 0.68 18.3 17.1 19.6
46.7 0.78 47.8 42.4 53.3
35.6 0.82 57.9 53.0 62.8
35.1 0.76 54.9 51.1 58.7
30.3 0.88 61.9 56.3 67.4

Table 3: Ablation study on LVOS validation set. R, G, and L denote MemR, MemG, and MemL, respectively.
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Figure 2: Ablation study. We visualize the results of different combinations of three memory banks on the same video. Best
viewed in color.

5. More Analysis About Diverse Dynamic Memory
We conduct an ablation study on the role of each memory bank in Table 3. To more clearly illustrate each memory bank’s

impact, we visualize the results of different combinations of three memory banks on the same video in Figure 2. This video
is about a man riding a bike through the streets. The man frequently gets occluded by cars. Moreover, there are many other
challenges in this video, such as background clutter (there are many similar people on the street), fast motion (the man is
moving quickly), low resolution (sometimes the bounding-box of this man is small), and significant appearance change (the



Attr AFB-URR [11] RDE [10] CFBI [19] AOT-B [20] AOT-L [20] STCN [3] XMem [2] LWL [1] Ora B Ora M Ora B+M

FM 34.1 48.4 45.3 54.3 55.3 42.5 46.7 48.2 73.8 82.6 85.5
OCC 34.5 48.2 46.1 50.6 52.1 43.3 47.6 50.3 72.5 79.1 83.6
OV 42.2 53.4 47.6 54.4 55.2 51.5 53.8 48.6 74.2 79.9 82.8
SV 33.1 48.4 45.7 48.3 50.4 41.5 43.7 47.2 66.8 76.6 80.5
AC 41.6 51.9 45.9 53.1 55.7 48.2 48.9 52.4 75.7 82.2 84.2

LRA 33.1 41.4 39.9 44.3 45.3 37.5 40.7 45.2 63.8 74.6 78.5
CTC 36.9 41.6 40.4 44.5 45.7 39.7 45.1 46.1 64.4 75.5 77.7

Table 4: Attribute-based aggregate performance. For each method, we just show J . Ora B, Ora M, Ora B+M denote oracle
box, oracle mask and oracle box + mask in oracle experiments, respectively.

appearance of this man changes a lot over the time). This video is extremely challenging. In the first row, we just use the
reference memory MemR, despite the re-detection after occlusion, the reference memory is sensitive to large appearance
changes. In the second row, only global memory MemG is enabled. Global memory is rich in temporal information so
MemG can handle occlusion, too. Because of the error accumulation, there are still many segmentation defects. In the third
row, only local memory MemL is used, and it is obvious that the model loses track after the first occlusion. In the fourth
row, we utilize the reference and global memory. Although the model is better at handling changes in appearance, it still has
trouble precisely segmenting the target. In the fifth row, we combine reference and local memory. The local memory boosts
the contour accuracy to a large descent. In the sixth row, global memory and local memory banks are used. Compared to the
fifth raw, the segmentation accuracy is a little worse. In the final row, we combine the three complementary memory banks.
DDMemory tracks and segments target objects successfully. The visual results demonstrate the role of the three memory
banks. The reference memory MemR is responsible for the re-detection after occlusion or out-of-view and is sensitive to
large appearance changes. The local memory MemL provides location cues and appearance prior. The global memory
MemG encodes the long-term temporal information as a complement to the other two memory features. For long-term VOS,
all three memory banks are essential and complementary.

6. Oracle Experiments
For oracle box, we convert groundtruth mask into box and only search target in the groundtruth box area. For oracle mask,

we search target in whole image and use groundtruth mask to update MemG and MemL. For oracle box and mask, we
search target in the groundtruth box area and use groundtruth mask to update MemG and MemL

7. Attribute-based Evaluation
We report performance of more models in Table 4 on validation set characterized by the most informative attributes. Scale

variation has a more pronounced negative impact on short-term visual object segmentation (VOS) performance than other
challenges, particularly for models that employ online adaption (OD) or compressed memory (C) feature banks. Additionally,
specific long-term challenges have an even greater impact on accuracy. Visual object segmentation (VOS) models may lose
track of the target object when it becomes small in size. Models that always keep the first frame in memory can re-detect
the target object. However, models that employ online adaption (OD) or compressed memory (C) feature banks may mistake
background objects for the target object, or they may be unable to restore detection due to the lack of guidance from the first
frame. Therefore, the ability to recover a disappeared object, distinguish the target object from similar background objects,
detect small objects, and model long-term historical information is crucial for robust LVOS.
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