Appendix: Learning Navigational Visual Representations
with Semantic Map Supervision
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A. Data Sampling

We sample images and create top-down semantic maps
for our Ego?-Map pre-training from the large-scale Habitat-
Matterport3D environments (HM3D) [3, 4]. HM3D pro-
vides 1,000 high-fidelity reconstructions of entire buildings
containing indoor spaces at diverse geographical locations
and physical sizes, with a total traversable area of 112.5k
m?. HM3D environments are divided into 800 training, 100
validation, and 100 testing scenes. In our work, we sample
data from the training and validation scenes for pre-training
and evaluation, respectively, and the sampling details will
be provided in this section.

A.1. Viewpoint Sampling

We sample viewpoints from the environments using a
virtual agent in the Habitat simulator [4]. We initialize
the agent such that its physical dimensions match the stan-
dard configurations in R2R-CE [2] (0.10 m radius and 1.50
m height with a camera pointing horizontally at 1.25 m
height). The setting of physical dimensions determines the
virtual agent’s navigable space, which is also the open space
that we applied to sample the viewpoints.

We create a heuristic to control the sam-
pling process; First, for each scene, we measure
the size of the total navigable area & wusing the
sim.pathfinder.navigable_area() function'.
Then, we apply sim.sample_navigable_point ()
to randomly sample a viewpoint p in the open
space. Each p needs to satisfy three criteria oth-
erwise discarded, checking by three functions: (1)
sim.sample_navigable_point (p): its  posi-
tion should be reachable from all other open regions,
(2) sim.island_radius (p)<1.50: the point

! All functions correspond to the functions defined in the Habitat Sim-
ulator, please refer to their detailed definitions in the official codebase:
https://github.com/facebookresearch/habitat-sim.

should not be sampled in narrow spaces, and (3)
sim.geodesic_distance (p;, p;) <0.40: the
minimal distance between any two viewpoints should
be greater than 0.40 meters. For each scene, we repeat
the above procedure to sample 4xS or 500 viewpoints?,
whichever is smaller.

A.2. Image Sampling

For each valid viewpoint, we use the camera to capture
four RGBD images with a resolution of 320x320 and a
horizontal field of view of 90°, where the range of depth
sensor is [0.5,5.0] meters. The views are sampled at ran-
dom orientations, and 2 pairs of views are created for mea-
suring the angular offset 6, while using all views to pre-
dict the maximal explorable distance d. As mentioned in
the Main Paper §3.3, the ground-truth angular offset is de-
fined in range [—m, 7], denoting either clockwise (nega-
tive) or counter-clockwise (positive) rotation whichever is
smaller in absolute value. The intuition behind such de-
sign is to encourage the model to learn the most efficient
rotation between two orientations. As for the exploration
distance prediction, we collect the ground-truth distances
by asking the agent to move forward 5.0 meters in each
view direction with a small step size of 0.10 meters, and
use the sim.previous_step_collided () to detect
collision.

A.3. Path Sampling

Path for connecting two distant views is sampled for
creating the top-down semantic map for Ego?-Map con-
trastive learning. In specific, we consider each viewpoint
as a source ps and randomly select a target viewpoint p;
within 7.0 meters geodesic distance radius. As described

2 A maximum is necessary because HM3D contains a few giant scans
with repetitive spaces (e.g. hotel rooms), which only offer very little image
diversity so that are inappropriate for training.
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Figure 1: Distribution of the sampled data. Left: angular offset for views pairs. Middle: explorable distance. Right: path
length between source and target viewpoints (computed by the ShortestPathFollower () function).

in Main Paper §3.2, each viewpoint in Ego?-Map is repre-
sented by a single egocentric view, which we directly use
one of the 4 sampled images for this purpose. Then, we ap-
ply the ShortestPathFollower (ps, 65, pt) to com-
pute the shortest path (and actions) for traveling from p; to
pe>, where 0 is the agent’s orientation at the source view-
point. Our agent uses a small turning angle of 5° and a small
forward step of 0.10 meters, so that more fine-grained and
accurate paths can be created. The shortest path is found if
the agent’s final position is within 0.50 meters of geodesic
distance to the target and the total number of actions is less
than 140 steps, otherwise, a new target viewpoint will be
paired for examination. Note that, we control each view to
be either a unique source or target view in all trajectories
to avoid repetitive use of the same image in Ego?-Map. Fi-
nally, ShortestPathFollower () returns the agent’s
position, orientation and action at each time step, which are
applied for generating the semantic map.

A .4. Generating Semantic Maps

We apply the Semantic MapNet (SMNet) [1] to generate
top-down semantic maps from the sampled paths. Briefly,
SMNet takes a sequence of the agent’s egocentric RGBD
observations and poses as input; for each step, the network
encodes the RGBD frame and projects it to a floor plan.
Then, a spatial memory tensor accumulates the projected
egocentric features from all steps. Finally, a map decoder
produces the allocentric semantic map from the aggregated
memory tensor. We refer the readers to the paper and code*
of the SMNet for more details.

In this work, we slightly shift the map so that the agent’s
starting position ps is at the center of the map. We also
scale the map such that it covers a [—6,6] meters range
(slightly less than the sampling radius of p;). To avoid rare
cases where little semantic information is captured at the

3More precisely, from the source view I to p; since the function does
not specify a target orientation.
4SMNet: https://github.com/vincentcartillier/Semantic-MapNet.

target position, we augment the paths by adding a 360° ro-
tation at p,. Moreover, we highlight the agent’s transition
by drawing the path as a gradient color line on the map.
Note that the pre-trained SMNet applies a different reso-
lution and field of view for the egocentric images than the
views in our image sampling process, we follow SMNet’s
default configurations to sample the RGBD images on the
path.

A.5. Creating Dataset

By following the aforementioned procedure, 252,537
viewpoints are sampled from the 800 training environ-
ments, from which 500,000 (Iy,, Iy, ) views pairs as well as
500,000 (I, I;, M) triplets are created for learning Ly and
L., respectively. Figure 1 shows the distribution of the sam-
pled angular offsets (left), explorable distances (middle) and
the distance between source and target viewpoints (right).
Note that the maximal geodesic distance for sampling
(Is, I;) 1s 7.0 meters, but the graph displays the actual path
length returned by the ShortestPathFollower ()
function, hence a few paths are longer than 7.0 meters.
Overall, we can see that the sampled angular offset and
the path length are roughly uniform in the sampling range,
whereas the majority of the explorable distances are in the
[0.2,2.0] meters range due to the structure of indoor spaces.

We employ the WebDataset library® for efficient storing
and loading data. Specifically, we create 1,000 shards each
contains 500 data points for training, where each data point
includes a (Ip,, Ip,) views pair and a (I, Iy, M) triplet.
Following the same procedure, we also create 20 shards for
validating the pre-training objectives (see Appendix §B).

B. Pre-Training Statistics and Results

We present the loss curves and the validation results of
the pre-training variants corresponding to Table 1 in the
Main Paper. As shown in Appendix Figure 2 and Table 1,

SWebDataset: https://github.com/webdataset/webdataset.
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Figure 2: Loss curves of the pre-training objectives.
Model # Pre-Training Objectives Error / Accuracy
Angular  Explorable Contrastive | Af (rad)| ‘ Ad (m)] ‘ I-M(%)t M-1(%)?

1 v 1.564 - - -

2 v - 0.198 - -

3 v - - 92.01 92.12
4 v v - 0.239 91.79 91.70
5 v v 0.810 - 91.53 91.63
6 v v 0.804 0.262 - -

7 v v v 0.819 0.256 92.02 92.03

Table 1: Validation of the pre-training tasks. A# and Ad denote the averaged discrepancy between the predicted angular
offset / explorable distance and their ground-truths, [ =M and M—1I are the alignment accuracy from views-pair to maps and
from map to views-pairs (evaluated with batch size 128 on 10,000 novel (I, I;, M) triplets). Models correspond to Table 1

in the Main Paper.

the loss Ly of the angular offset prediction does not con-
verge to the same level as the others when minimized alone,
showing large error in the prediction and leading to invalid
features for the downstream navigation tasks. However, it
is interesting to see that Ly can be learned in the presence
of L4 or L.. One possible reason is that the model can
extract valuable spatial information by predicting distance
or aligning views and maps to facilitate the learning of an-
gular relationships between views. In Model#5, Model#6,
and Model#7, the predicted angular error is around 0.810
rad (46°), again suggesting the difficulty of learning angu-
lar offset from views. Besides, we can see that the learning
of L, only shows a minor difference across the model vari-
ants, and the prediction error is very low (up to 26.2 cen-
timeters), which indicates that the learned features contain
accurate information of whether a direction is explorable.
As for the Ego?-Map contrastive learning, the loss curves in
training smoothly converge to zero. We evaluate the align-
ment accuracy with a batch size of 128 on 10,000 novel
(Is, I, M) triplets from the validation split; results show
that both the views-pair to maps (I—M) and map to views-
pairs (M—I) matching are highly accurate, suggesting the
transfer of map information to egocentric representations.
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