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S1. Experimental details and more results

S1.1. OOD score

S1.1.1 Super-resolution space generation

We generated 1470 patches from the DIV2K [1] 4× vali-
dation dataset and ranked them based on their OOD score
(sOOD) using the conditioning network gθ of the fully-
trained FS-NCSR [8]. For the super-resolution space gener-
ation, we concatenate the output of RRDB [10] blocks 1, 8,
15, 22, instead of directly using the output of gθ for better
feature representation of the conditioning encoder, which is
trained on the DF2K [9] training set 4×. Then, we collect
patches of size 160× 160 and compute the OOD score (i.e.
sOOD) for each patch. The method of concatenating blocks
of RRDB stems from the work of SRFlow [6], where they
concatenate equally spaced RRDB blocks 1, 8, 15, 22, and
23 to obtain the final output of the conditioning encoder.
This corresponds to Section 3.3 and Figure 4 of the main
paper.

Pixel error To verify the presented OOD score, we com-
puted the pixel error probability for each patch by gener-
ating 10 samples from each image of the DIV2K valida-
tion set. For each sample, we calculated the number of
erroneous pixels, with the minimum and maximum error
threshold set as −0.5 and 1.5, respectively. This is because
the output of the neural network should be within the range
of [0, 1] before clamping. However, it is important to note
that this pixel error is only a necessary condition for the
exploding inverse, and not a necessary and sufficient con-
dition. This is because a value of 0 or 1 obtained after
clamping may be intended. Table S1 shows the percentage
of conditional inputs that generate at least one pixel whose
value is outside the range of [−0.5, 1.5]. In the case of in-
distribution, only 7% of the conditional inputs generated at
least one pixel error. However, in the case of OOD, 90%
of the conditional inputs generated pixel errors. It is worth
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Train set Test set Distribution % PixelErr↓

DF2K 4× DIV2K 4× in-distribution 7%
EUrban100 4× OOD 90%

Table S1: The percentage of conditional inputs that generate
at least one error pixel (i.e., pixel value is out of [−0.5, 1.5])
out of 10 randomly generated latent codes, each with z ∼
N (0, τ2), where τ = 0.9.

noting that these values are significantly higher than the per-
centages of conditional inputs that generate an erroneous
image in human eyes.

Enhanced Urban100 To investigate the case of severe
OOD, we made modifications to the Urban100 dataset [2].
The original Urban100 dataset has an average OOD score
of E[sOOD] = 331.01, which is only slightly larger than
that of the training set (E[sOOD] = 236.78). To generate
a severe OOD dataset, we enhanced each image of the Ur-
ban100 dataset by strengthening the high frequency compo-
nents using a convolution kernel H, where
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This operation enhanced the OOD score to E[sOOD] =
511.35, which is much larger than that of the training set.

S1.1.2 Low-light image enhancement

We also calculate the OOD score for the low-light image
enhancement on the LOL [12] testset. The second row of
Figure 1 in the main paper shows an erroneous sample gen-
erated from the patch with the highest OOD score among
the 90 patches. Similar to the task of super-resolution space
generation, we concatenate the output of RRDB blocks 1,
3, 5, 7 as the output of gθ, the conditioning network fully
trained on the LOL [12] training set. Then, we collect a
total of 90 patches, each of size 100 × 100. We rank the
OOD score based on the mahalanobis score of each patch.



Figure S1: Pixel error probability for the patches ranked
according to their OOD score (sOOD). The average of 90
patches is marked as a dashed horizontal line.

In Figure S1, we show the pixel error probability of the LOL
dataset ranked according to the OOD score of each patch.
In all cases, ours showed the best results.

S1.2. 2D toy experiment

Training data The training data is obtained by the fol-
lowing equation:

x =

[
x1

x2

]
=

[√
3
4 − 1

10
1
4 −

√
3

10

] [
u1

u2

]
, (S2)

where u1, u2 ∼ U(−1, 1) (i.e., uniform distribution on
(−1, 1)). We generated 100,000 samples using (S2).

Network architecture NN in the coupling layers was a
fully connected network composed of four hidden layers
with a width of 64. For the modified RQ-spline coupling
layer, the output of NN is four-dimensional (i.e., h2 ∈ R4).
The four components of the output are bias (i.e. t), input
coordinate of the learnable knot, output coordinate of the
learnable knot, and slope of the learnable knot (i.e., deriva-
tive of the RQ-spline transformation at the learnable knot).
The input coordinate of the learnable knot is normalized
(via sigmoid) to be in (B1 + ϵ, B2 − ϵ), and the output co-
ordinate of the learnable knot is normalized (via sigmoid)
to be in (B1 + t + ϵ, B2 + t − ϵ). We set the slope of the
learnable knot in (ϵ,∞), via exponential function. We used
(B1, B2) = (−0.5, 0.5) and ϵ = 0.001. z was assumed to
be the standard Gaussian.

Training We trained the network using Adam opti-
mizer [3], with (β1, β2) = (0.9, 0.999), learning rate

5× 10−4, batch size 1,000, for 8,000 iterations.

S1.3. Super-resolution space generation

Training data For the DIV2K [1] validation set, the train-
ing set is a combination of DIV2K 1-800 and Flickr2K [9]
1-2,650 (total 3,450, and the union of DIV2K and Flickr2K
is referred as DF2K), and the test set is DIV2K 801-900
and EUrban100. We used 160×160 RGB patches as HR
images. We randomly cropped the original images to gen-
erate 160×160 RGB patches. We used bicubic kernel to
generate the conditional inputs. We applied 90◦ rotations
and horizontal flips randomly for data augmentation.

Network architecture In the case of substituting the
affine coupling layer of FS-NCSR [8] with the modified
RQ-spline coupling layer, the output of NN was set in the
same manner as in Section S1.2. NN was a CNN, which is
the same as FS-NCSR. The other structures were also ex-
actly same as FS-NCSR. We set τ = 0.9.

Training We trained the network using Adam opti-
mizer [3], with (β1, β2) = (0.9, 0.999), initial learning rate
2 × 10−4. The learning rate is halved when 50%, 75%,
90%, 95% of the total number of iterations are trained. For
DIV2K 4× dataset, batch size was 16, and the number of
iterations was 180,000. For DIV2K 8× dataset, batch size
was 12, and the number of iterations was 200,000. For fast
training on 8× datasets, we replaced the invertible 1×1 con-
volutions with fixed random unitary matrices. This tech-
nique is proposed by Lugmayr et al. [7], and has the effect
of reducing training time while maintaining performance.
We train the networks on a NVIDIA GeForce GTX 3090
GPU.

Additional results We provide additional examples of ar-
tifacts in Figure S2.

S1.3.1 Additional experiment on another dataset

For the CelebA [5] validation set, CelebA 1-182,340 served
as the training set, while CelebA 182,341-202,600 (total
20,260) was the validation set. In the case of CelebA 8×
dataset, batch size was 12, and the number of iterations was
100,000. We provide examples of artifacts in Figure S3. Ta-
ble S2 shows the quantitative results of 8x super-resolution
space generation on CelebA datasets. %Inf demonstrates
that our method effectively suppressed exploding inverses.
However, compared to Table 1 in the text, FS-NCSR has a
relatively small %Inf, as the CelebA dataset has very few
OOD conditional inputs overall. Since the occurrence of
exploding inverses was infrequent in this dataset, there was
no significant difference in min and σ. Nevertheless, our



LR FS-NCSR [8] FS-NCSR† Ours Ground Truth
Figure S2: Qualitative comparison of coupling transformation in super-resolution space generation. The 1st-2nd, 3rd-4th,
and 5th-6th rows show the samples from DIV2K [1] 4×, DIV2K 8×, and EUrban100 4×. The † sign denotes that the lower
bound of the scale parameter is 0.1.

method, with the exception of min, exhibited the most fa-
vorable results.



LR FS-NCSR [8] FS-NCSR† Ours Ground Truth
Figure S3: Qualitative comparison of coupling transformation in super-resolution space generation, on CelebA [5] 8×. The
† sign denotes that the lower bound of the scale parameter is 0.1.

Train → Test CelebA 8×→ CelebA 8×
Model %Inf ↓ min ↑ σ ↓ % PixelErr ↓

FS-NCSR [8] 0.074 50.73 0.223 2.78
FS-NCSR† 0.020 51.09 0.214 1.62
Ours 0 50.63 0.199 0.48

Table S2: Quantitative comparison on CelebA 8× dataset.
The † sign denotes that the lower bound of the scale param-
eter is 0.1. ‘%Inf’ and ‘% PixelErr’ refer to the percentage
of conditional inputs that generate at least one Inf pixel /
pixel whose value is out of [−0.5, 1.5] out of 10 randomly
generated latent codes, each with z ∼ N (0, τ2), respec-
tively. min and σ refer the average of the minimum and
standard deviation of LR-PSNR, respectively.

S1.4. Low-light enhancement

Sampling method LLFlow [11] suggested two sampling
schemes to solve the low-light image enhancement prob-
lem. One is to fix the latent code z to 0 (i.e., x̂ =
f−1
θ (0;y)). The other is to select a batch of z from the

Gaussian distribution, and then calculate the mean (i.e.,
x̂ = Ez∼N (0,τ2)[f

−1
θ (z;y)]). Although LLFlow proposed

both schemes, the authors only experimented with the first
scheme. Here, we show experimental results that the sec-
ond scheme generates erroneous images, while our solution

does not.

Training data We follow the training method of
LLFlow [11] where we perform two evaluations: one on
the LOL [12] validation set (trained on the LOL training set)
and one on the VE-LOL [4] captured validation set (trained
on the LOL training set).

Training We trained the network using the same hyper-
parameters as the authors of LLFlow [11]. For both exper-
iments, the batch size was 16 for the baseline model and
8 for our model. The number of iterations was 40,000 for
the baseline model and 80,000 for our model. We train the
networks on a NVIDIA Titan RTX GPU.

Additional results We provide additional examples of ar-
tifacts in Figures S4 and S5.

S2. Additional Resources

We used the source code of Zhang et al. [13] to zoom
images.



Input LLFlow [11] LLFlow† Ours Ground Truth

Figure S4: Qualitative comparison of coupling transformation in low-light image enhancement on the LOL [12] dataset. The
† sign denotes that the lower bound of the scale parameter is 0.1.

Input LLFlow [11] LLFlow† Ours Ground Truth

Figure S5: Qualitative comparison of coupling transformation in low-light image enhancement on the VE-LOL [4] dataset.
The † sign denotes that the lower bound of the scale parameter is 0.1.
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