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1. Further Implementation Details
In this section, we describe our implementation de-

tails for the related methods log-likelihood maximiza-
tion (Log [6, 8]), Monte Carlo Dropout (Drop [3]) and
BayesCap (BCap [10]) that we applied to the models Mon-
odepth2 [5], Pixelformer [1] and MonoViT [12].

Log-Likelihood Maximization (Log) When using log-
likelihood maximization, the model does not only predict
the pixel-wise depth d̂ but also the pixel-wise variance u,
which is used as an uncertainty measure. For the super-
vised trained Monodepth2 [5], we optimize the model with
the following loss function:

Llog =
|d̂− d|

u
+ logu, (1)

where the Laplace distribution is assumed as the prior dis-
tribution over the model output [8]. In this context, u rep-
resents the variance of the output distribution and d the
ground truth depth.

The supervised trained Pixelformer [1], on the other
hand, is optimized with a Scale-Invariant loss:

LSILog = α

√
1

n

∑
i

g2i −
λ

n2
(
∑
i

gi)2, (2)

where α = 10, λ = 0.85 and n is the number of pixels with
available ground truth. We replace the log-scaled difference
gi = log d̂i− log di and model the Laplacian distribution as
in Equation 1 with

gi =
|d̂i − di|

ui
+ log ui. (3)

For Monodepth2 [5] and MonoViT [12] trained in a
self-supervised manner with monocular sequences, the loss

function proposed in [6] is used during optimization:

Llog =
Lpm

u
+ logu, (4)

where Lpm is the photometric matching loss and u the pre-
dicted variance.

Monte Carlo Dropout (Drop) To obtain the empirical
mean and variance over the model parameters with Monte
Carlo Dropout, we use 8 forward passes with activated
dropout [9] and dropout probability of 0.2. In the case of
Monodepth2 [5], we apply dropout after each ConvBlock
in the depth decoder. Similarly, we use dropout after each
decoder ConvBlock for MonoViT [12]. In the case of Pix-
elformer [1], we apply dropout after the blocks Q3, Q2 and
Q1.

BayesCape (BCap) For all models, we rely on the
BayesCap implementations from [10]. We set T1 and T2
to 10 and 1, respectively. Furthermore, we reduce T1 after
each epoch with exponential decay and keep T2 fixed. For
NYU, we divide the output depth by the maximum depth of
10 meters to scale the depth values in the range of [0, 1] be-
fore passing them to the BayesCap model. For KITTI, the
output of the depth estimation model is already in the range
of [0, 1].

2. Further Visual Results
In Figure 1 to Figure 4, we show further visual examples

of our image decoder. The figures show the original in-
put image x (left), the reconstructed image x̂ (center), and
the resulting error map e (right). In Figure 1 and Figure 2,
visual results with Pixelformer [1] and Monodepth2 [5]
trained on NYU Depth V2 [7] (NYU) as in-distribution
are displayed. We use test images from the same dataset
and the OOD dataset Places365 [13] (Places). In Fig-
ure 3 and Figure 4, visual results with Monodepth2 [5] and
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Figure 1: Pixelformer [1] is trained on the in-distribution dataset NYU Depth V2 [7] (NYU). We show test images x from
the in-distribution (ID) dataset NYU and the out-of-distribution (OOD) dataset Places365 [13] on the left. The corresponding
reconstructed images x̂ from our image decoder and resulting error maps e are shown in the middle and right, respectively.

MonoViT [12] trained on KITTI [4] as in-distribution are
illustrated. We demonstrate images from the same dataset
and the OOD datasets Places365 [13] (Places), India Driv-
ing [11] (India), and virtual KITTI [2] (vKITTI). While the
error maps of the in-distribution test images show low er-
rors, the images of the different OOD datasets yield high
errors.

3. Failure Cases

Two possible failure cases of the proposed image de-
coder are that in-distribution images may not be recon-
structed well but OOD images are reconstructed well. This
leads to the images in question being incorrectly catego-
rized as OOD, even though they are in-distribution and vice



Image x Reconstruction x̂ Error Map e

ID N
YU

O
O

D
P

la
ce

s3
65

Figure 2: Monodepth2 [5] is trained on the in-distribution dataset NYU Depth V2 [7] (NYU). We show test images x from
the in-distribution (ID) dataset NYU and the out-of-distribution (OOD) dataset Places365 [13] on the left. The corresponding
reconstructed images x̂ from our image decoder and resulting error maps e are shown in the middle and right, respectively.

versa. In Figure 5, failure cases of the image decoder for
Monodepth2 trained on NYU are shown. The first failure
case shows an in-distribution test image from NYU where
the reconstruction error in the window region is high, al-
though it is an in-distribution image. Here, the window

blinds cause strange reflections that are not normally seen
in other training images. The second example shows an im-
age from the OOD dataset Places365. In this case, the re-
construction error is low but should be high since the image
is not covered by the training distribution.
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Figure 3: Monodepth2 [5] is trained on the in-distribution dataset KITTI [4]. We show test images x from the in-
distribution (ID) dataset KITTI and the out-of-distribution (OOD) datasets Places365 [13], India Driving [11] (India) and
virtual KITTI [2] (vKITI) on the left. The corresponding reconstructed images x̂ from our image decoder and resulting error
maps e are shown in the middle and right, respectively.

Figure 6 demonstrates failure cases of the image decoder
for Monodepth2 trained on the outdoor dataset KITTI. The
image decoder reconstructs the blue container of the in-
distribution test image in a different color scheme. This
might happen as no similar object appears in the training
data. The test image from the OOD database virtual KITTI
(vKITTI), on the other hand, is too well reconstructed.
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Figure 4: MonoViT [12] is trained on the in-distribution dataset KITTI [4]. We show test images x from the in-distribution
(ID) dataset KITTI and the out-of-distribution (OOD) datasets Places365 [13], India Driving [11] (India) and virtual
KITTI [2] (vKITI) on the left. The corresponding reconstructed images x̂ from our image decoder and resulting error
maps e are shown in the middle and right, respectively.
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Figure 5: Failure of the image decoder for in-distribution (ID) image from NYU [7] and out-of-distribution (OOD) image
from Places365 [13] as input to Monodepth2 [5] trained on NYU [7].
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Figure 6: Failure of the image decoder for in-distribution (ID) image from KITTI [4] and out-of-distribution (OOD) image
from virtual KITTI (vKITTI) [2] as input to Monodepth2 [5] trained on KITTI [4].
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