
A. APPENDIX
A.1. Additional experiment results

Accuracy of each class on CIFAR-100-LT. We visualize
the accuracy of each class of both SCL and SBCL on CIFAR-
100-LT with imbalance ratio 100 (Figure 5). From the results,
we can see that SBCL improves performance on tail classes
over SCL without the expense of the perforamnce of the
head classes.

Selection of negative instances in SBCL. Our proposed
loss in Eq. 4 consists of two supervised contrastive losses
with subclass and class labels respectively. The first term
regards instances in different subclasses as negative instead
of these in different classes; In Table 7, we show that such
design choice leads to better performance than using in-
stances in different classes as negative, which illustrates the
effectiveness of exploiting the rich semantic in head classses.

Table 7: Different selection of negative instances in SBCL
on CIFAR-100-LT with different imbalance ratio. The ‘Class
label‘ row are the first term of loss function is constructed by
class label and the ’Subclass label’ row are subclass label.

Negative samples
Imbalance Ratio

100 50 10
Class label 43.7 47.6 56.8

Subclass label 44.9 48.7 57.9

Analysis of feature distribution. To analyze the repre-
sentation learned by SBCL, we firstly define the euclidean
distance between a given sample and other samples from
the same/different classes as intra/inter-class distance. Con-
cretely, the euclidean distance between a sample zi and a
set S is defined as D(zi, S) =

1
|S|

∑
zj∈S ∥zi − zj∥2. Then,

the intra- and inter-class distance of sample zi can be de-
fined as D(zi, Pi) and D(zi,D/Pi) separately; and the intra-
and inter-subclass distance of sample zi can be defined as
D(zi,Mi) and D(zi, Pi/Mi) separately.

To leverage instance semantic coherence to balance the
feature space, we expect instances of high semantic coher-
ence to form a more concentrated cluster than other instances
in the same class. So, we embed the subclass-balancing
adaptive clustering strategy on SBCL to illustrate this on
CIFAR-100-LT with imbalance ratio 100. In Table 8, we
report the intra-subclass/inter-subclass distance on different
splits. The results show that SBCL achieves to concentrate
instances from the same subclass and pulls instances from
different subclasses away on all splits.

SBCL aims at learning a compact representation space,
in which representations from different classes are far from
each other and the feature space spanned by representations

of each class is invariant to the long-tailed distribution. The
average intra/inter-class distance are summarized in Table 8
and the distances of different groups are reported separately.
The results also show SBCL clears the boundary of feature
distribution on the different class splits.

Table 8: Average intra/inter-subclass and intra/inter-class
distance of features learned by SBCL.

Distance Many Medium Few All
Intra-subclass 0.68 0.76 0.87 0.70
Inter-subclass 1.02 0.99 0.89 1.01

Intra-class 1.00 0.94 0.88 0.99
Inter-class 1.39 1.38 1.37 1.39

Subclass-balancing adaptive clustering. We propose an
noval K-means algorithm aimed at achieving balanced intra-
cluster sample quantities.

In the initial step, we adopt a strategy to select cluster cen-
ter points that are maximally distant from each other. This
ensures an optimal distribution of initial cluster centers [3].

Next, in the assignment step, we calculate the similarity
between each sample point and the selected cluster centers.
The sample points are then assigned to the cluster centers
in descending order of their similarity scores. However,
we introduce a modification to this step by incorporating a
constraint on the maximum number of samples assigned to
a given cluster center. Once this threshold is reached, the
cluster center is not eligible to receive any samples.

In the update step, we revise the cluster centers which are
determined as the average values of the samples allocated to
this cluster.

We continue to iterate through the assignment and update
steps until we satisfy the termination condition, which is
achieving a predetermined number of iterations (M ). This
iterative process facilitates a balanced distribution of sam-
ples within each cluster, leading to release the long-tailed
phenomena.

Hyperparameter analysis on CIFAR-100-LT. Figure 6a
and Table 9 show the distribute situation of sample num-
ber in subclasses obtained by different cluster algorithms
on CIFAR-100-LT with imbalance ratio 100. For Kmean
cluster algorithm, the imbalance phenomenon of subclasses
is obvious. When using our proposed cluster algorithm, the
imbalance ratio of sample number in subclasses deceases
from 40 to 9.5. And the standard deviation of sample num-
ber on CIFAR-100-LT is relatively small, which denotes
the number of samples in most subclasses keeps stable in a
certain range.

Figure 6b shows the impact of batch size on SBCL/TSC.
We find that larger batch sizes have a significant advantage



Figure 5: Accuracy of each classes on CIFAR100-LT. The black line is the class distribution, and the classes in the left part are
head classes while those in the right part are tail classes.
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Figure 6: Analysis of SBCL as a loss function of different hyperparameters on CIFAR-100-LT with imbalance ratio 100.
(a): Sample number in clusters with different cluster algorithm. (b): Top-1 accuracy of SBCL/TSC as a function of different
batch size. (c): Top-1 accuracy of SBCL/TSC as a function of different pretraining epochs. (d): Top-1 accuracy of SBCL/TSC
as a function of different learning rates.

over the smaller ones. This is because larger batch sizes
provide more negative examples to facilitate convergence.
However, the over-large batch size hurts the model perfor-
mance. And SBCL and TSC are equally sensitive to batch
size on CIFAR-100-LT.

Figure 6c shows the curve of the accuracy of SBCL/TSC
vs. the number of training epochs. From the curve, we can
see that the performance of SBCL and TSC both converge
after 800 epochs. When the model is trained with SBCL

over 600 epochs, its performance already exceeds TSC.
In Figure 6d, we display the performance of SBCL with

different learning rates on CIFAR-100-LT with imbalance
ratio 100. As shown in the figure, the learning rate has sig-
nificant impact on the performance, and we set the learning
rate as 0.5 for CIFAR-100-LT.

Combining TSC with dynamic temperature. According
to Table 5, dynamic temperature effectively contributes to



Table 9: Distribution of sample number in subclass on CIFAR-100-LT with imbalance ratio 100.

Dataset Max Min Average Std Imbalance ratio(Max/Min)
Kmean clustering algorithm 40 1 10.34 6.27 40
Subclass-balancing adaptive clustering algorithm 19 2 10.34 1.60 9.5

the improvement of accuracy. We also add the dynamic tem-
perature to the second term of TSC [41] and the experiment
results are shown in Table 10. However, the improvement of
the dynamic temperature on TSC is less significant than that
on our method, which is reasonable because we introduce
dynamic temperature for the loss to distinguish between
class and subclass, while TSC does not have subclass and
therefore the dynamic temperature is less effective.

Time efficiency comparison of SBCL and TSC. In Ta-
ble 11, SBCL consumes more time, because we use a clus-
tering algorithm on head classes to train SBCL on CIFAR-
100-LT with imbalance ratio 100. However, we update the
clustering results every few training iterations, and ultimately
achieve better results than TSC. Therefore, we believe that
the additional small computational cost is worth the effort.

Warm-up on ImageNet-LT. Instead of using the SCL
at the warm-up stage for CIFAR datasets, KCL is adopted
for ImageNet-LT and iNaturalist 2018 datasets to warm up
the feature extractor. As Table 12 shows, warm-up phase
makes feature extractor improve accuracy on all splits of
ImageNet-LT. This is because it prevents cluster assignment
from feature random distribution at the beginning and avoids
using the SCL to make the feature space dominated by the
head class at the warm-up stage.

Advantages of cluster validity. Actually, previous stud-
ies [33, 41] have proven that randomly sampling balanced
instances as positive pairs (such as KCL, TSC) is better than
sampling all instances of the same class as positive pairs
(such as SCL). However, this strategy may destruct instance
semantic coherence. In Table 13, we replace the first team
(regard subclasses as positive pairs) with the balanced posi-
tive sampling strategy (KCL) to prove this on ImageNet-LT.
As the results show, subclass-balancing adaptive clustering
strategy brings more improvement to SBCL than balanced
positive sampling strategy.

COCO object detection and instance segmentation. In
this section, following the experiment setting in [24], we
use Mask R-CNN [25] to conduct the object detection and
instance segmentation experiments on COCO dataset. The
schedule is the default 2× in [24]. Table 14 shows the pre-
trained model trained by SBCL outperforms it learned with
other contrastive learning for the downstream tasks.

Hyperparameter studies. Here, we study the effect of
hyperparameters β and δ. Note that β controls the balance
of two loss terms in Eq. 4 and δ determines the lower bound
of the cluster size in Eq. 3. Specifically, on CIFAR-100-
LT with imbalance ratio 100, we vary the values of β from
{0.1, 0.2, 0.5, 0.8, 1.0, 2.0} with δ = 10 and the value
of δ from {5, 10, 20, 30, 50, 100} with β = 0.2. The
results are summarized in Table 15. We observe that the
smaller β values (between 0.1 and 0.5) can achieve relatively
good performance, with the best being 0.2. This observation
aligns with our intuition of emphasizing the subclass-level
contrastive loss, because smaller β is equivalent to putting
more weights on the first term of Eq. 4, which corresponds
to the subclass-level contrastive. For δ, the values between
5 and 30 yield high accuracy, with the best being 10. We
can see that large δ values (δ = 50, 100) lead to significant
drop in performance. We argue that this is because large δ
value would result in subclasses that contain more instance
than tail classes and therefore affect the subclass-balance,
leading to suboptimal performance. In addition, smaller δ
value (δ = 5) also causes performance drop; the reason
could be small cluster size may let similar instance being
assigned to different clusters and therefore affect the learned
representations. Therefore, we fix β = 0.2 and δ = 10 for
all experiments.

Visualization of generated clusters. In Figure 7, we show
the clustering results of ImageNet-LT training images gen-
erated by subclass-balancing adaptive clustering algorithm.
From the results, we can see that the algorithm is able to
find the subclasses with similar patterns, helping the model
learn semantic coherent representations. For example, the
two subclasses in the bottom-left are telephone with/without
human.

A.2. Additional information

Benchmark datasets statistical information and Imple-
mentation Details. We summarize the statistical informa-
tion of the three benchmark datasets in Table 16. Follow-
ing [33, 34, 41], we apply SBCL on the long-tailed recog-
nition by using a two-stage training strategy: (i) train the
representation with SBCL; (ii) learn a linear classifier on top
of the fixed representation. The training process is the same
as TSC [41]. Thus, we use TSC default hyperparameters and
implementation details for the representation learning. For
CIFAR-100-LT dataset, all experiments are performed on 2



Table 10: Combination of TSC and SBCL with dynamic temperature.

Dynamic temperature
CIFAR-100-LT

TSC SBCL
Imbalance Ratio 100 50 10 100 50 10

43.5 47.6 58.7 43.8 47.8 57.0
✓ 43.9(+0.4) 48.0(+0.4) 59.2(+0.5) 44.9(+1.1) 48.7(+0.9) 57.9(+0.9)

Table 11: Computing cost (GPU hours) on CIFAR-100-LT
dataset with imbalance ratio 100.

Method TSC SBCL
GPU hours 2 2.4

Table 12: SBCL with and without warm-up stage on
ImageNet-LT.

Method Many Medium Few All
SBCL without warm-up 62.9 49.6 29.3 52.0
SBCL with warm-up 63.8 51.3 31.2 53.4

Table 13: Subclass-balancing adaptive clustering strategy
improves more than balanced positive sampling strategy on
ImageNet-LT.

Method Many Medium Few All
FCL 61.4 47.0 28.2 49.8
KCL 62.4 49.0 29.5 51.5
TSC 63.5 49.7 30.4 52.4
SBCL (KCL) 63.3 49.5 30.6 52.2
SBCL 63.8 51.3 31.2 53.4

NVIDIA RTX 3090 GPUs. For ImageNet-LT and iNaturalist
2018 datasets, we perform the experiments on 8 NVIDIA
RTX 3090 GPUs. The detailed hyperparameters of TSC and
SBCL are given in Table 17.

For the classify learning, training the linear classifier
strategy is the same with TSC [41]; so, we use TSC de-
fault hyperparameters and implementation details for the
classifier learning. For the detect model learning, we follow
MoCo [24] to adopot the same setting, hyperparameters and
evolution metrics with R50-C4 backbone. For Pascal VOC
dataset, we train Faster R-CNN [51] on VOC07+12 and eval-
uate on the test set of VOC07. For COCO dataset, we train
Mask R-CNN [25] on train2017 set and evaluate on val2017
set.

Limitations. SBCL has some limitations. First, cluster-
ing the head class in SBCL takes a long time on the training
phase, especially for ImageNet-LT and iNaturalist 2018. Sec-
ond, SBCL requires knowing the number of samples in each
class to decide the cluster number; so, it is not applicable to

Figure 7: Visualization of subclasses generated by SBCL.
Images with green and orange boarder are randomly drawn
from different subclasses within the same classes. We can
see that SBCL could produce semantically coherent sub-
classes.

problems where the number of samples is unknown.

Social impacts. This work aims to propose a novel repre-
sentation learning to help people resolve the bias in the real
world data recognition, which might has positive social im-
pact. We do not foresee any form of negative social impact
induced by our work.

Privacy information in data. All datesets we used in the
experiment are public. The datasets only include the pictures,
which most are animals and plants. No private information
is included.

Baseline information. We report the accuracy of KCL
and TSC on different benchmark datasets from [41]. For



Table 14: Object detection and instance segmentation results on COCO dataset. The representation model is trained on
ImageNet and ImageNet-LT. We report results in bounding-box AP (APbb) and mask AP (APmk).

Method
ImageNet ImageNet-LT

AP AP50 AP75 AP AP50 AP75

APbb

random init. 35.6 54.6 38.2 35.6 54.6 38.2
CE 40.1 59.8 43.3 38.1 57.4 41.2
CL [24] 40.4 60.1 44.1 39.7 59.4 42.7
KCL [33] 40.8 60.6 44.0 39.4 59.1 42.6
SBCL 41.1 60.8 44.2 40.0 59.6 43.0

APmk

random init. 31.4 51.5 33.5 31.4 51.5 33.5
CE 34.9 56.6 37.0 33.3 54.2 35.4
CL [24] 35.1 56.9 37.6 34.7 56.1 37.1
KCL [33] 35.5 57.4 37.8 34.4 55.8 36.4
SBCL 35.7 57.5 37.9 35.0 56.3 37.3

Table 15: Hyperparameter study of β and δ on CIFAR-100-
LT with imbalance ratio 100.

β 0.1 0.2 0.5 0.8 1.0 2.0
ACC(%) 44.6 44.9 44.5 44.1 43.9 42.1

δ 5 10 20 30 50 100
ACC(%) 44.3 44.9 44.6 44.3 42.9 42.3

Table 16: Statistics of datasets. The imbalance ratio ρ =
n1/nC .

Dataset classes training data test data imbalance ratio
CIFAR-100-LT 100 50,000 10,000 {100, 50, 10}
ImageNet-LT 1,000 115,846 50,000 256
iNaturalist 2018 8,142 437,513 24,426 500

SwAV1 [8], PCL2 [40] and BYOL3 [21], we use their official
open-source implementations.

1SwAV offical implementation: https://github.com/
facebookresearch/swav.

2PCL offical implementation: https://github.com/
salesforce/PCL.

3BYOL offical implementation: https://github.com/
deepmind/deepmind-research/tree/master/byol.



Table 17: Hyperparameters used by different loss functions for benchmark datasets. The detailed hyperparameters of iNaturalist
2018 are the same as the ImageNet-LT.

Hyperparameters
ImageNet-LT CIFAR100-LT

TSC SBCL TSC SBCL
module MoCo MoCo SimCLR SimCLR

warm-up epoch 200 200 0 10
epoch 400 400 1000 1000

batch size 256 256 1024 1024
learning rate 0.1 0.1 0.5 0.5

learning rate schedule cosine cosine cosine cosine
memory size 65536 65536 - -

encoder momentum 0.999 0.999 - -
feature dimension 128 128 128 128

softmax temperature 0.07 0.07 0.1 0.1
k-positive number 6 - 4 -

hyperparameter of β 0.2 0.2 0.2 0.2
hyperparameter of δ - 20 - 10
hyperparameter of α - 10 - 10


