
A. Appendix
Quality of augmentation policies on Reduced SVHN.
For Reduced SVHN dataset, we show data augmentations
learned by MADAug are superior to AdaAug on the im-
provement of per-class accuracy, especially in the “4”, “7”,
“8”, and “9” classes in Figure 6.

Figure 6: MADAug and AdaAug’s improvements to dif-
ferent classes on Reduced SVHN dataset. Compared with
AdaAug, MADAug enhances the test accuracy across vari-
ous classes, particularly demonstrating a more notable pos-
itive impact on same classes such as “4”, “7”, “8”, and “9”.

Figure 7: Similarity between the original images and
MADAug-augmented images at various training phases.
As the training process, MADAug gradually generates more
“challenging” augmentation policies for images.

AdaAug [4] provides detailed augmentation policies for
models throughout the entire training stage. These augmen-
tation policies make samples distinguish from the original
images, which can potentially hinder model convergence
during the early stages of training. However, MADAug
gradually applies the data augmentations for samples. Fig-
ure 7 demonstrates that as the training epoch progresses,
more “adversarial” images generated by MADAug can be
provided for the task model. Figure 8 visually illustrates
that during the early training phase, the model receives the
original images, while as the training progresses, MADAug
learns and applies more “challenging” augmentation poli-
cies to augment the images. However, these policies are de-

signed to avoid collapsing the intrinsic meanings of the im-
ages and instead, emphasize the crucial information within
them.

Figure 8: Augmentations learned by AdaAug and
MADAug applied to the “4”, “7”, “8”, and “9” class
images at various training epochs on Reduced SVHN
dataset. Each augmentation operation is formatted with its
name and magnitude, respectively.

Advantages of MADAug over AdaAug. AdaAug em-
ploys a two-stage training process, where the first stage in-
volves learning data augmentation strategies for individual
samples through alternating “exploration” and “exploita-
tion” steps. In the second stage, the learned strategies are
fixed while training the task model. However, AdaAug ex-
hibits limitations, including the inability to dynamically up-
date the learned data augmentation strategies based on the
performance of the current task model and the suboptimal
choice of a two-stage training process.

To address these drawbacks, we propose the MADAug
method that overcomes these limitations. In MADAug, we
dynamically optimize the data augmentation strategies for
each sample by leveraging the current model’s performance
on the validation set. This facilitates training the model with
the most effective data augmentation for the given training
stage. We adopt an end-to-end training approach for the task
model, differing from AdaAug and AutoAugment, which
utilize a two-stage training methodology.

Additionally, we discover that data augmentations do not
improve model performance obviously in the early stages of
training. Therefore, we use the monotonic curriculum strat-
egy, gradually applying data augmentations to each sample



as the training progresses, thereby enhancing the robustness
of the task model.

Through the use of MADAug, we demonstrate signifi-
cant advancements over AdaAug, achieved by its ability to
dynamically optimize data augmentation strategies and em-
ploy the monotonic curriculum strategy.

Model hyperparameters. We show the important hyper-
parameters on different benchmark datasets in Table 8. For
other details on the hyperparameters and implementation,
we display them in the open source code.



Table 8: Hyperparameters on benchmark datasets. We do not specifically tune these hyperparameters, and all of these are
consistent with PBA and AutoAugment.

Dataset Model Learning Rate Weight Decay Batch Size epoch
CIFAR-10 Wide-ResNet-40-2 0.1 5e-4 128 200
CIFAR-10 Wide-ResNet-28-10 0.1 5e-4 128 200
CIFAR-10 Shake-Shake (26 2x96d) 0.01 1e-3 128 1,800
CIFAR-10 PyramidNet+ShakeDrop 0.05 5e-5 64 1,800

CIFAR-100 Wide-ResNet-40-2 0.1 5e-4 128 200
CIFAR-100 Wide-ResNet-28-10 0.1 5e-4 128 200
CIFAR-100 Shake-Shake (26 2x96d) 0.01 2.5e-3 128 1,800
CIFAR-100 PyramidNet+ShakeDrop 0.025 5e-4 64 1,800

Reduced CIFAR-10 Wide-ResNet-28-10 0.05 5e-3 128 200
Reduced CIFAR-10 Shake-Shake (26 2x96d) 0.025 2.5e-3 128 1,800

SVHN Wide-ResNet-28-10 0.005 1e-3 128 200
SVHN Shake-Shake (26 2x96d) 0.01 1.5e-4 128 1,800

Reduced SVHN Wide-ResNet-28-10 0.05 1e-2 128 200
Reduced SVHN Shake-Shake (26 2x96d) 0.025 5e-3 128 1,800

ImageNet ResNet-50 1.6 1e-4 4096 270


