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As mentioned in the main paper, our training procedure
consists of two phases, CL4WSSS and CL4WSIS. More
of their details are illustrated in Figs. 1(a) and 1(b), re-
spectively. In Phase 1, we train the semantic branch of
the t-th step Segmenter. The learned CL4WSSS network
then serves for predicting the semantic segmentation re-
sults and producing further the synthetic center & offset
maps in Phase 2 to train the instance branch of the Seg-
menter for CL4WSIS. As demonstrated in the results of
the main paper, our method outperforms the method in [2]
on CL4WSSS by introducing FLAC, random dropout and
peak generator techniques. We develop a selective distil-
lation mechanism that leverages CL4WSSS results to learn
the step-t Segmenter from the (t− 1)-th and obtain a better
CL4WSIS solution.

More details and results are given in the following.

1. Additional Implementation Details
In this section, we complement additional details on

Peak Generator (PG) & Multi-label Classification Loss.

1.1. Peak generator & multi-label classification loss

As mentioned in the main paper, PAM introduced in [2]
does not ensure that the peaks (or hypothesized object cen-
ter locations) are inside the high-score semantic maps. It is
because PAM is trained separately from the WSSS model,
and so it does not take into account the semantic knowledge.

To strengthen the relationship between peaks and WSSS,
we append the peak generator (PG) after the Decoder.
Specifically, PG takes as input the Decoder’s output Zt and
produces Zpg ∈ R|Yt|×H×W . We then highlight the core
regions and suppress the noisy regions in Zpg as follows.
Pixels on channel c are treated as core pixels if their val-
ues are greater than the channel-specific threshold τc. τ , the
threshold vector for all channels, is computed by pixel-wise
multiplying a hyper-paramenter γ with G ∈ R|Yt|×1×1,
where G is the global max pooling of Zpg and γ is set to
0.7 in our implementation. Furthermore, unlike PAM that
uses global average pooling (GAP), we use the nGWP [1] to
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aggregate the Zpg because nGWP can highlight the contri-
bution of more correlated pixels to a class. The aggregated
score ŷpg is obtained by:
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where M pg = softmax(Zpg) and ϵ is a small constant.
The aggregated ŷpg is then trained with Global Image La-
bels via the multi-label classification loss:
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c )). (2)

2. Additional Training Details
As illustrated in Fig. 1(a) for Phase 1, the Multi-label

Classification module contains a Decoder followed by an
Aggregator (A) and is optimized with the binary cross en-
tropy (BCE) using Global Image Labels. This module
is mainly for estimating each pixel’s “contribution score”
to each class by decomposing its intermediate output Zt,
which is then refined by the Location Cue Extractor through
label smoothing [3] to provide the synthetic pixel-wise la-
bels to train our Segmenter. The label smoothing is done by
first generating a one-hot distribution for each pixel, where
the class of the highest score for a pixel is set to one, denoted
as Zhard,t. The synthetic semantic map is then obtained by

Ssyn = βZhard,t + (1− β)Zt (3)

with β a hyper-parameter that controls the smooth-
ness. Feature-level augmentation consistency and Random
Dropout are employed to improve the Decoder’s perfor-
mance. Peak Generator (PG) is appended after the Decoder
to strengthen the activation of Decoder’s outputted semantic
map and provide instance cues for Phase 2. The old knowl-
edge is maintained by distilling the semantic maps yielded
by the Previous-step Segmenter to both the Decoder and the
current Segmenter, and also through feature distillation be-
tween the outputs of et and et−1. Note that the instance
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(a) Phase1: CL for WSSS. Our Decoder dt(·) followed by an Aggregator is optimized with Global Image Labels. This module’s output
semantic scores are then refined by the Location Cue Extractor through label smoothing to provide the synthetic pixel-wise labels to train
our Segmenter. Feature-level augmentation consistency and Random Dropout are employed to improve the Decoder’s performance. Peak
Generator (PG) is appended after the Decoder to strengthen the activation of Decoder’s output semantic map and provide instance cues for
Phase 2. The old knowledge is maintained by distilling the semantic maps yielded by the Previous-step Segmenter and also through feature
distillation. The instance branch for generating the center and offset maps is frozen in this phase.
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(b) Phase2: CL4WSIS. Only the instance branch is optimized in this phase. Our approach relies on the instance cues outputted by PG and
CL for WSSS prediction from the semantic branch in the Segmenter to generate the synthetic center and offset maps through the Location
Cue Extractor. At the same time, the CL for WSSS prediction is used for the Semantic-aware Selective Distillation to preserve the old
center & offset knowledge from the Previous-step Segmenter.

Figure 1: Training phases. Our method includes improving Phase 1: CL for WSSS and upgrading to Phase 2: CL4WSIS.
Suppose that horse is the old class and person is the current class during continual learning.

branch in the Segmenter for generating the center and offset
maps is frozen in this phase.

In Phase 2 shown in Fig. 1(b), the whole network, ex-
cept for the instance branch, is frozen. We rely on the in-
stance cues outputted by PG and CL for WSSS predictions
from the semantic branch of the Segmenter to generate the
synthetic center and offset maps through Location Cue Ex-
tractor. At the same time, the CL for WSSS predictions
are also used in the Semantic-aware Selective Distillation
to keep the old center and offset knowledge from Previous-
step Segmenter.
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