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In this supplementary material, we provide the details
of the hybrid attack layer, the baseline designs and the ex-
perimental settings. Also, more experimental results on the
imperceptibility of RAW protection and the performance of
robust image manipulation detection are presented.

1. Details of the Hybrid Attack Layer.
Manipulation Mask Generation. Real-world image tam-
pering may be oriented on regions of interest within a tar-
geted image. However, code-driven realistic image manipu-
lation can be expensive and time-consuming. We study the
natural distribution of tampered areas by observing the bi-
nary masks in CASIA dataset [3]. The location of forgery
within an image roughly follows a uniform distribution ex-
cept for corners, and for most manipulated images, the to-
tal area of forged contents is within the range of 5%-30%.
For simplification, we assume that the location of forgery
within an image during training roughly follows a uniform
distribution and the accumulated manipulated squared area
is within the range of [0, 0.3].

We apply free-form mask generation [20] to arbitrarily
select areas within Î according to a binary mask M.

Ît = Î · (1−M) +R ·M, (1)

where R is the source of manipulation.
Image Manipulation Simulation. For image manipula-
tion, we simulate the most common types of tampering,
which include copy-moving, splicing and inpainting. The
simulation of different kinds of attacks can be reflected by
the composition of R in Eq. (1). For copy-moving, we let
R in Eq. (1) as a spatially-shifted version of Î. For splic-
ing, we use another random RGB image as R. However,
we find that this setting of attack will encourage the net-
work to widen the distribution gap between Î and natural
RGB images to better distinguish each other, thus greatly
decreasing the overall image quality. To address this, we
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also apply an enhanced splicing attack named coincident-
splicing that “coincidentally" use another protected RGB Î′

as R. For inpainting, we use the open-source model from
LAMA [16] and ZITS [4] to generate the inpainted result as
R. We iteratively and evenly perform the above three types
of attacks for balanced training.
Image Distortion Simulation. Similar to HiDDeN [22],
we simulate typical image lossy post-processing opera-
tions to enhance the robustness of the proposed method.
The involved attacks include the following: (1) rescal-
ing, which resizes the image by an arbitrarily resizing rate
r ∈ [50%, 150%], (2) median blurring, which blurs the
image using median filter whose kernel size k is arbitrar-
ily selected from [3, 5], (3) Additive White Gaussian Noise
(AWGN), which adds Gaussian noise evenly on the image,
where the standard value s ranges from zero to one, (4)
Gaussian blurring, which is similar to the median blurring
but the kernel is different, (5) JPEG compression, which
compresses the image using the popular Diff-JPEG [14]
with tunable JPEG quality factors.
Color Adjustment Simulation. Most users prefer manu-
ally adjusting the brightness or contrast after RAW files are
automatically rendered into RGBs. Therefore, we also sim-
ulate typical color adjustment operations to mitigate their
impacts on the performance of our method. The involved
attacks include the following: (1) Hue adjustment: the im-
age hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel. The
image is then converted back to the original image mode.
The hue factor is set within the range of [−0.05, 0.05]. (2)
contrast enhancement: we adjust the contrast of an image,
where the contrast factor is set within the range of [0.7, 1.5].
(3) saturation adjustment: we adjust the color saturation
of the image, where the factor is set within the range of
[0.7, 1.5]. (4) brightness adjustment: we adjust the bright-
ness of the image, where the factor is set within the range
of [0.7, 1.5]. The differentiable data augmentation functions
applied during training are implemented by the APIs from
the “torchvision" package.
Real-world Attack Involvement. The real-world attacks



Figure 1. Illustration of DT-CWT, which is a two-dimensional
transform that decomposes an image into six frequency subbands
at each level of the transform.

are implemented by the APIs from the “cv2" package, e.g.,
cv2.GaussianBlur for Gaussian blurring and cv2.imencode
for JPEG compression. These functions are performed on
PIL images in “ndarray" format, which requires that we
transform the 32-bit float-typed tensors into 8-bit integer-
based arrays. Therefore, quantization attack is also auto-
matically considered by the introduction of real-world at-
tacks. In each iteration of the training stage, we perform
the corresponding real-world attacks using the same setting
from the simulated methods.

2. Frequency Learning in Deep Networks
Existing Methodologies. Frequency-learning is an effi-
cient way to reduce computation resource costs. For ex-
ample, Xu et al. [19] proposes a learning-based frequency
selection method to identify trivial frequency components
in the input images, which can be removed without per-
formance loss. According to [8], self-attention layers can
be replaced with simple Fourier transformations to speed
up Transformer encoder architectures under limited accu-
rary sacriface. FEDformer [21] exploits the sparse repre-
sentation in Fourier transform to capture the global view
of time series. In addition, frequency-domain information
has shown great potential in revealing subtle differences be-
tween real and fake images, such as in face forgery detec-
tion tasks, where it can help detect generated faces [5, 1, 17]
or synthesized images [11, 9, 10] based on face-swapping
techniques.

However, the above-listed work only replaces interpo-
lation with DWT or DCT, which still requires heavy com-
putation. In order to design a new lightweight network with
frequency learning, we must effectively combine the advan-
tages of wavelet transform and CNN architecture.
DT-CWT Transformation. The Dual-Tree Complex
Wavelet Transform (DT-CWT) is a type of wavelet trans-
form used in signal and image processing. It was intro-
duced by Kingsbury [12] and is an extension of the dis-

crete wavelet transform (DWT) that uses complex wavelets.
The DT-CWT is a two-dimensional transform that decom-
poses an image into six frequency subbands at each level
of the transform. These subbands are formed by filtering
the image with two sets of filters, one for the real part of
the wavelet and the other for the imaginary part. The filters
are designed to have good directional selectivity and to be
approximately shift-invariant.

The DT-CWT has been successfully applied to various
computer vision tasks, including image denoising [6], im-
age super-resolution [7], and object detection [15, 13]. For
example, in object detection, the DT-CWT can be used to
extract features that are both scale and orientation invari-
ant, which can improve the accuracy of the detector. In
image super-resolution, the DT-CWT can be used to ex-
tract high-frequency information that is lost during image
downsampling, which can then be used to reconstruct a
higher-resolution image. With the development of mod-
ern CNN networks, researchers prefer learning end-to-end
feature extractors in favor of pre-designed filters, which
possibly results in a downgraded role of wavelet transform
played in computer vision tasks. However, compared to cas-
caded learnable convolutional layers, DT-CWT transform
still contain several advantages as follows.
Bringing DT-CWT into CNNs. Introducing DT-CWT into
CNNs can have several advantages for our task and beyond.
First, the DT-CWT is robust to noise in image data, as it can
extract features at multiple scales and orientations. This can
help improve the performance of CNNs on modifying the
higher-frequency details. Second, the DT-CWT can extract
rich features that are both scale and orientation invariant,
which can improve the discriminative power of CNNs. This
can be particularly useful in content-aware protective signal
embedding. Thirdly, the DT-CWT can reduce the complex-
ity of CNNs by reducing the number of filters required in
the initial layers. It also provides both magnitude and phase
information, which can be used to visualize and interpret
the learned features.

In MPF-Net, we combine the benefit of DT-CWT with
Fourier frequency learning, where FFT can mitigate the is-
sue of focusing too much on local patterns. Besides, global
information aggregation and lower computational complex-
ity is achieved by the proposed HFC and PFF mechanisms.

3. More Experimental Results
Fig. 2 shows more experimental results on the impercep-

tibility of RAW protection. From the results, we see that
the injected signal is weak and the generated protected RGB
images are not affected in their overall visual quality.

To justify the generalizability to lossy transmission, we
randomly handcraft 150 manipulated images, upload them
onto several famous OSNs and download them for detec-
tion. Also, we test the performance against dual JPEG and
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Figure 2. Examples of protected RAWs and the corresponding protected RGBs. In each test, we apply two ISPs for rendering (upper:
InvISP / TradISP, middle: LibRAW / TradISP, lower: CycleISP / LibRAW). The RAW images are visualized through bilinear demosaicing.
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Figure 3. Example of performance gain on MVSS with DRAW. The protection helps the detector locate the forged area despite the
presence of lossy image operations.

Table 1. Generalizability to lossy transmission and untrained
perturbations. Dataset: RAISE.

Forgery S&P Dual JPEG Facebook Weibo WeChat
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

splicing .839 .855 .657 .683 .917 .920 .902 .897 .763 .728
copymove .854 .850 .692 .729 .905 .910 .859 .870 .637 .688
inpainting .687 .711 .377 .423 .665 .598 .623 .577 .410 .355

salt & pepper attack (p = 5%) which are untrained types for
DRAW. As shown in Table 1, DRAW can effectively resist
lossy OSN transmission, and its protection remains valuable
against unknown lossy operations.

Fig. 3 and Fig. 4 respectively show some examples
of performance gain on MVSS [2] and RIML [18] with
DRAW. The protection helps the two detectors locate the
forged area despite the presence of lossy image operations.

4. Details of the Baseline Methods.

Fig. 5 illustrates the pipeline overview of the two base-
line methods, namely, image forgery detection with pure
robust training and image forgery detection using RGB pro-
tection. Detailed settings are specified as follows.

RAW Protection vs Pure Robust Training. We vali-
date the impact of RAW protection on the performance of
DRAW by first removing the RAW protection stage. The
corresponding fidelity terms are also removed. In this case,
no camera imaging pipeline is considered and the training
technique of hybrid attacking layer involvement is solely
responsible for improving the robustness of image manip-
ulation localization, which is close to RIML. According to
the experiments, the baseline can indeed noticeably boost
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Figure 4. Example of performance gain on RIML with DRAW. The protection helps the detector locate the forged area despite the
presence of lossy image operations.
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Figure 5. Pipeline comparison between DRAW and baselines.

the performance of manipulation detection under lossy im-
age operations, but the overall accuracy is worse than that
of RAW protection. The reason is that finding a universally-
existing trace to unveil manipulation is difficult in the real
world, unlike injecting an outer-sourced signal for later re-
trieval.
RAW protection vs RGB protection. We compare RAW
protection with RGB protection, in which we modify the
original image for anti-manipulation protection. The ISP
process is also ruled out in the pipeline. The RAW pro-
tection term is therefore removed and the hyper-parameters
are changed as β = 1, γ = 0.01, ϵ = 0.005. Though the
two schemes ideally can come up with the same solution
where after image rendering, the protective signal embed-
ded within RAW could be the same or close compared with
that embedded directly within RGB, the experimental re-
sults show that successful RGB protection is more difficult
compared to RAW protection. The reason is that RAW pro-
tection can adaptively introduce protection with the help of
content-related procedures, e.g., demosaicing and noise re-

duction, within the subsequent ISP algorithms that suppress
unwanted artifacts and biases. Besides, RAW data modifi-
cation enjoys a much larger search space that allows trans-
formations from the original image into another image with
high density upon sampling.

5. Other Implementation Details

We train all network-based ISP pipelines using RGB im-
ages rendered by the libraw library as supervision and these
pre-trained ISPs will be frozen when training the RAW pro-
tection network. We find that for different RAW datasets,
the performances of cross-dataset RGB image rendering of
ISP networks are not satisfactory. Therefore, for each RAW
dataset, we separately train their exclusive ISP networks.
In contrast, our protection network is transferable, and we
train the network based on a single benchmark dataset, e.g.,
RAISE, and conduct experiments on other datasets on this
model without further fine-tuning.
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