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1. Supplementary Experiments and Analyses

In this supplementary section, more analyses on how
to achieve better results with different hyperparameter r,
and feature/deviation visualization are given. Additionally,
full results on domain generalization benchmarks are also
supplemented.

1.1. More Analyses on Tuning Deviation Norm Hy-
perparameter r

In our proposed DandelionNet, to reduce the difficulty of
optimization and also avoid trial solution, the deviation norm
is simply constrained to the same for all domains and classes.
But in an oracle model, the norm values are probably differ-
ent. In this section, we simply conduct trials about setting
different r for varied domain on L38, L43, L46 → L100
experiment in TerraIncognita benchmark. The results are
shown in Table 1. As we firstly observe that the best accuracy
is achieved in this experiment when r = 0.1 and r = 0.05,
here r is automatically searched in this scope. It is observed
that after finely tuning r for each source domain, the ac-
curacy on unseen target domain can be further improved,
e.g., about 2.0% in this trial experiment, which indicates
that specifying degrees of deviation for different domains
is reasonable, and our work would be quite promising with
more flexible domain specific and semantic category specific
classifier weight deviation.

1.2. More Visualization Results on Different Bench-
marks

We also visualize feature space and learnt deviation in
VLCS which contains smaller number of classes (5), and
OfficeHome which contains larger number of classes (65) in
Figure 1. As illustrated, features from the same class are clus-
tered together as well as with individual variations. Besides,
the automatically optimized deviation also shows domain
composition in these multiple benchmarks, demonstrating
that feature and our deviation are optimized as expected.

Table 1: More flexible hyperparameter r on
L38, L43, L46 → L100 in TerraIncognita. The light
blue are the best and second best results with the same r,
and the yellow one is the best result after simply tuning
different r for each source domain.

Deviation norm set for sources Acc
L38 L43 L46 L100
0.1 0.1 0.1 63.1
0.1 0.1 0.05 63.1
0.1 0.05 0.1 67.7
0.1 0.05 0.05 65.3

0.05 0.1 0.1 65.7
0.05 0.1 0.05 64.1
0.05 0.05 0.1 61.9
0.05 0.05 0.05 65.6

1.3. Full Results on Domain Generalization Bench-
marks

In this section, full results with the best hyperparameter
r = 0.1 on the five domain generalization benchmarks are
shown in Tables 2, 3, 4, 5, and 6 for more detailed verification
of this proposed method.

1.4. Results with different model architectures

To demonstrate the versatility of our DandelionNet for
multiple model architectures besides ResNet50, supple-
mentary experiments with smaller ResNet18 and larger
transformer-based ViT-B/16 are shown in Table 7.

1.5. More validatations on SFDA under less intra-
domain variations

For source free domain adaptation (SFDA), In most ex-
periment and reality settings, the source and target domains
are with varied variation. But here we also add exemplifi-
cations on the setting where the intra-domain variations are
similar, i.e., the most difference between domains are the



Figure 1: Feature and deviation visualization on VLCS (L, S, V → C) and OfficeHome (C,P,R → A), where the blue stand
for target domain.

Table 2: Out-of-domain accuracies (%) on PACS.

Method A C P S Avg
CDANN [12] 84.6 75.5 96.8 73.5 82.6
IRM[1] 84.8 76.4 96.7 76.1 83.5
ERM [14] 85.7 77.1 97.4 76.6 84.2
MASF[8] 82.9 80.5 95.0 72.3 82.7
MetaReg [3] 87.2 79.2 97.6 70.3 83.6
GroupDRO [13] 83.5 79.1 96.7 78.3 84.4
VREx[7] 86.0 79.1 96.9 77.7 84.9
MLDG [11] 85.5 80.1 97.4 76.6 84.9
ARM[17] 86.8 76.8 97.4 79.3 85.1
RSC[9] 85.4 79.7 97.6 78.2 85.2
Mixstyle[18] 86.8 79.0 96.6 78.5 85.2
SWAD[4] 89.3 83.4 97.3 82.5 88.1
EoA[2] 90.5 83.4 98.0 82.5 88.6
Ours 87.8 86.5 96.8 85.8 89.2

main domain shift, The results in Table 8 indicate that our
method can achieve good performance in not only the more
complicated scenarios where both intra- and inter- domain
variations are significant but also the simpler scenarios where
only the domain shift is dominant.

References
[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. In-

variant risk minimization. arXiv preprint arXiv:1907.02893,

Table 3: Out-of-domain accuracies (%) on VLCS.

Method C L S V Avg
CDANN [12] 97.1 65.1 70.7 77.1 77.5
IRM[1] 98.6 64.9 73.4 77.3 78.6
ERM [14] 98.0 64.7 71.4 75.2 77.3
I-Mixup [16] 98.3 64.8 72.1 74.3 77.4
GroupDRO [13] 97.3 63.4 69.5 76.7 76.7
VREx[7] 98.4 64.4 74.1 76.2 78.3
MLDG[11] 97.4 65.2 71.0 75.3 77.2
ARM[17] 98.7 63.6 71.3 76.7 77.6
Mixstyle[18] 98.6 64.5 72.6 75.7 77.9
SWAD [4] 98.8 63.3 75.3 79.2 79.1
EoA[2] 99.1 63.1 75.9 78.3 79.1
Ours 99.1 70.2 77.2 80.0 81.6

2019. 2, 3
[2] D. Arpit, H. Wang, Y. Zhou, and C. Xiong. Ensemble of aver-

ages: Improving model selection and boosting performance
in domain generalization. In NeurIPS, 2022. 2, 3

[3] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg:
Towards domain generalization using meta-regularization. In
NeurIPS, 2018. 2, 3

[4] J. Cha, S. Chun, Kyungjae Lee, and et al. Swad: Domain
generalization by seeking flat minima. In NeurIPS, 2021. 2, 3

[5] J. Cha, K. Lee, S. Park, and S. Chun. Domain generalization
by mutual-information regularization with pre-trained models.
In ECCV, 2022. 3



Table 4: Out-of-domain accuracies (%) on OfficeHome.

Method A C P R Avg
CDANN [12] 61.5 50.4 74.4 76.6 65.7
IRM[1] 58.9 52.2 72.1 74.0 64.3
ERM [14] 63.1 51.9 77.2 78.1 67.6
I-Mixup [16] 62.4 54.8 76.9 78.3 68.1
GroupDRO [13] 60.4 52.7 75.0 76.0 66.0
VREx[7] 60.7 53.0 75.3 76.6 66.4
MLDG[11] 61.5 53.2 75.0 77.5 66.8
ARM[17] 58.9 51.0 74.1 75.2 64.8
Mixstyle[18] 51.1 53.2 68.2 69.2 60.4
SWAD [4] 66.1 57.7 78.4 80.2 70.6
EoA[2] 69.1 59.8 79.5 81.5 72.5
Ours 65.8 58.6 78.0 79.7 70.5

Table 5: Out-of-domain accuracies (%) on TerraIncognita.

Method L100 L38 L43 L46 Avg
CDANN [12] 47.0 41.3 54.9 39.8 45.8
IRM[1] 54.6 39.8 56.2 39.6 47.6
ERM [14] 54.3 42.5 55.6 38.8 47.8
I-Mixup [16] 59.6 42.2 55.9 33.9 47.9
GroupDRO [13] 41.2 38.6 56.7 36.4 43.2
VREx[7] 48.2 41.7 56.8 38.7 46.4
MLDG[11] 54.2 44.3 55.6 36.9 47.8
ARM[17] 49.3 38.3 55.8 38.7 45.5
Mixstyle[18] 54.3 34.1 55.9 31.7 44.0
SWAD [4] 55.4 44.9 59.7 39.9 50.0
EoA[2] 57.8 46.5 61.3 43.5 52.3
Ours 63.1 48.7 60.0 46.4 54.5

Table 6: Out-of-domain accuracies (%) on DomainNet.

Method clp inf pnt qdr rel skt Avg
CDANN [12] 54.6 17.3 43.7 12.1 56.2 45.9 38.3
IRM[1] 48.5 15.0 38.3 10.9 48.2 42.3 33.9
ERM [14] 63.0 21.2 50.1 13.9 63.7 52.0 44.0
I-Mixup [16] 55.7 18.5 44.3 12.5 55.8 48.2 39.2
GroupDRO [13] 47.2 17.5 33.8 9.3 51.6 40.1 33.3
VREx[7] 47.3 16.0 35.8 10.9 49.6 42.0 33.6
MLDG[11] 59.1 19.1 45.8 13.4 59.6 50.2 41.2
ARM[17] 49.7 16.3 40.9 9.4 53.4 43.5 35.5
Mixstyle[18] 51.9 13.3 37.0 12.3 46.1 43.4 34.0
MetaReg [3] 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG [6] 65.2 22.2 50.0 15.7 59.6 49.0 43.6
SWAD [4] 66.0 22.4 53.5 16.1 65.8 55.5 46.5
EoA[2] 65.9 23.4 55.3 16.5 66.4 57.1 47.4
Ours 66.5 24.6 55.8 16.6 67.8 57.5 48.1

[6] P. Chattopadhyay, Y. Balaji, and J. Hoffman. Learning to
balance specificity and invariance for in and out of domain
generalization. In ECCV, 2020. 3

[7] J.-H. Jacobsen D. Krueger, E. Caballero and et al. Out-of-

Table 7: Out-of-domain accuracies (%) on DomainBed with
ResNet18 and ViT-B/16 .

ResNet18 PACS VLCS OfficeHome TerraIncognita
XDED[10] 83.8 74.8 65.0 42.5

Ours 85.3 78.2 66.5 48.2
ViT-B/16 PACS VLCS OfficeHome TerraIncognita DomainNet
MIRO [5] 95.6 82.2 82.5 54.3 54.0

Ours 96.3 83.4 85.8 57.0 57.1

Table 8: Source free domain adaptation on CIFAR10C at
level 5 of corruption (Err %).

WRN-28 gn sn in db gb mb zb snow
TENT[15] 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9

Ours 21.1 19.6 27.2 12.2 29.4 13.9 11.8 16.2
WRN-28 fros fog brt contr et pixel jpg

TENT[15] 16.2 13.7 7.9 12.1 22.0 17.3 24.2
Ours 15.3 12.5 8.5 10.2 22.3 16.1 20.1

distribution generalization via risk extrapolation. In ICML,
2021. 2, 3

[8] Q. Dou, D. C. Castro, K. Kamnitsas, and B. Glocker. Do-
main generalization via model-agnostic learning of semantic
features. In NeurIPS, 2019. 2

[9] Z. Huang, H. Wang, E. P Xing, and D. Huang. Self-
challenging improves cross-domain generalization. In ECCV,
2020. 2

[10] K. Lee, S. Kim, and S. Kwak. Cross-domain ensemble distil-
lation for domain generalization. In ECCV, 2022. 3

[11] D. Li, Y. Yang, Y. Song, and T. Hospedales. Learning to
generalize: Meta-learning for domain generalization. In AAAI,
2018. 2, 3

[12] Y. Li, M. Gong, X. Tian, and et al. Domain generalization via
conditional invariant representations. In AAAI, 2018. 2, 3

[13] S. Sagawa, P. W. Koh, and P. Liang T. B. Hashimoto. Dis-
tributionally robust neural networks for group shifts: On the
importance of regularization for worst-case generalization. In
ICLR, 2020. 2, 3

[14] R. Vedantam, D. Lopez-Paz, and D. J. Schwab. An empirical
investigation of domain generalization with empirical risk
minimizers. In NeurIPS, 2021. 2, 3

[15] D. Wang, E. Shelhamer, S. Liu, and et al. Tent: Fully test-time
adaptation by entropy minimization. In ICLR, 2021. 3

[16] M. Xu, J. Zhang, B. Ni, and et al. Adversarial domain adapta-
tion with domain mixup. In AAAI, 2020. 2, 3

[17] M. Zhang, H. Marklund, A. Gupta, S. Levine, and C. Finn.
Adaptive risk minimization: A meta-learning approach for
tackling group shift. arXiv preprint arXiv:2007.02931, 2020.
2, 3

[18] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang. Domain generaliza-
tion with mixstyle. In ICLR, 2021. 2, 3


