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1. Data Processing Details
To reiterate from the main paper, the datasets we used in

our experiments are CUB-200-2011 (Birds) [10], Stanford
Cars (Cars) [4], (3) VGGFlowers (Flwrs) [7], (4) Aircraft
(Aircrft) [6], (5) Describable Textures (Textre) [1], and (6)
CIFAR 100 (CFAR) [5]. All datasets are partitioned along
their original train-test split. For datasets with an additional
validation set, in the case of Textre, Aircrft, and Flwrs, we
merge this with the test dataset. The Aircrft dataset has dif-
ferent levels of aircraft type - Manufacturer, family, variant.
Variant is the specific model of aircraft and we chose this as
the label for highest granularity.

On the Birds, Flwrs, Aircrft, and Textre datasets we per-
form a randomized cropping followed by a 224×224 resiz-
ing on the train datasets, then a randomized horizontal flip,
and a normalization of the RGB colors. On the test datasets
we resize the images to 256×256 and then center crop them
to 224× 224, and again normalize the colors. For Cars and
CFAR datasets we use the same processing we used for the
test datasets for both the train and test datasets. These im-
ages are then converted to tensors to be used as inputs.

For inputs to all algorithms except FedFull, we in-
put these image tensors into pretrained ResNet101 and a
DenseNet121 convolutional neural networks. We use the
existing versions downloaded from PyTorch, which are
trained on the ImageNet dataset. We remove the final lin-
ear layer from these CNNs to retrieve the feature tensors as
outputs which we concatenate and use as the inputs of most
of the evaluated algorithms. ResNet101 produces 1024-
dimensional vectors while DenseNet121 produces ones of
dimension 2048, so the concatenated feature vector is 3072-
dimensional.

To sample the data for N client devices and a dataset
with k classes, we generate N vectors of length k, one
for each client, drawn from a Dirichlet distribution. More
precisely, given concentration parameter α and for a task
of k classes, we sample client class distribution vectors
(x1, . . . , xk) ∈ [0, 1]k, such that

∑k
i=1 xi = 1, according

1Equal contribution.

to the following probability density function:

pα(x1, . . . , xk) =
1

B(α)

k∏
i=1

xα−1
i (1)

where B(α) is a normalization. The concentration pa-
rameter α dictates the skewness of data with values closer
to 0 being more skewed and larger values generating more
i.i.d. samples. More generally the Dirichlet concentration
parameter can be assigned per class by replacing α with αi

in Eq. (1), but we use the same value on all classes in the
generated client distributions.

For each client we assign 500 images by sampling from
each class, with replacement, the proportion given by these
generated distribution vectors. The sampling is done with
replacement because in many datasets some classes may not
have sufficiently many examples, especially in the non-i.i.d.
case.

2. Simulation Implementation Details
All of our experiments are done as simulations of syn-

chronous, centralized federated learning. We assume a cen-
tral server that broadcasts a global model that client devices
download and upload for their local training. Our simulator
is implemented with PyTorch [8]

Prior to training we initialize the client data distributions
via Dirichlet sampling and these samples are fixed for an
entire simulation. At the start of a global communication
and training round, we randomly select the subset of clients
that participate in the training. For IST and ISTProx this is
also when the model partitioning is done.

In the centralized learning approximation experiments,
we also train the central MLP models on the central server
without partitioning to clients. In this case, for consistency
of training data, we concatenated the sampled datasets of
the participating clients and used this as the training set.

2.1. Models

Except FedFull, all algorithms use a single-hidden layer
multilayer perceptron (MLP) as their base model. This con-



sists of a linear layer, followed by a BatchNorm (Batch Nor-
malization) layer, then a ReLU activation function, and then
another linear layer followed by a softmax. As our pre-
trained extractor outputs are 3072-dimensional vectors, the
input layer of the MLPs are 3072 wide, while the output
layer has the number of classes of a particular dataset, e.g.
on Birds we would have 200 width output layer.

For all algorithms except for IST, ISTProx, and FedFull,
the MLP hidden layer has 1000 neurons. FedFull uses the
ResNet18, initialized with the default weights pretrained
on the ImageNet dataset and then fine-tuned on the various
datasets.

For IST and ISTProx, we find scaling the hidden neu-
rons based on the number of concurrent training sites made
sense: 3000 neurons for ten sites, 6000 for 20, 9000 for 30,
18000 for 60, and so on. This ensures that the client mod-
els are not too small and in this setup the IST client models
share the MLP architecture but with 300 hidden neurons in
all cases.

For MOON, we also extract the output after the ReLU
activation function as the learned representation used in its
contrastive term.

2.2. Training

We use batch size of 32 for all datasets and methods. A
single local training round computes one batch. A learning
rate of 0.01 is chosen on all algorithms except FedAdam
which uses 0.03, with a 10x decay after 50% and 75% of
total communication rounds have passed. In the centralized
training case, we instead train an entire epoch by passing
through all the concatenated data samples once.

Prior to training, we generate estimations of the FLOP
usage of a forward or backward pass per batch via the
Python fvcore [2] package’s FLOPCountAnalysis as well as
the model size via the torchinfo [12] package. After a com-
munication round, we estimate the total bytes transferred
by multiplying the model size by the number of participat-
ing clients and then double this to account for both down-
loading and uploading the model to the central server. To
compute the FLOP usage after a communication round, the
FLOPCountAnalysis gives an estimate of the forward prop-
agation that we multiply by two to account for the backward
pass and then by the number of local rounds and the number
of participating clients. For MOON this FLOP estimate is
also doubled to account for its extra two forward pass com-
putations.

Except FedProx, ISTProx, and FedNova, all methods use
a standard stochastic gradient descent optimizer for the lo-
cal training with a momentum weight of 0.9. After a global
communication round, we reinitialize these optimizers to
avoid reusing stale momentum from the previous training.

FedProx and ISTProx use a proximal optimizer that also
takes as input the initial state of the model before local train-

ing is done.
FedNova uses its own optimizer that is based on an im-

plementation from [11].

2.3. Testing and Evaluation

As our goal is to evaluate the generalizability of the ag-
gregated model, the testing dataset is taken as a whole rather
than sampled by a Dirichlet distribution as in the case of the
training set. Our final accuracy is computed by the propor-
tion of the top-1 predicted classes that match the true label.

These methods may have inconsistent accuracy perfor-
mance within a few communication rounds. So in comput-
ing the final accuracies, we average over a sliding window
of 10 communication rounds to smooth out the accuracies.

We reiterate the process detailed in the main paper that
we choose the highest accuracy among all algorithms and
then take 90% of this accuracy as our threshold. We then
identify the smallest GB transferred and GFLOP count
needed to reach this 90% threshold.

3. Additional Tables
We include the following tables for additional results of

the experiments in the main paper:

• Skewed data, 100 sites, 30% client participation Tab. 1

• Skewed data, 1000 sites, 2% client participation Tab. 2

• Skewed data, 1000 sites, 6% client participation Tab. 3

These tables generally follow the same trends that we ob-
served in the skewed 10% participation experiments in the
main paper. Again, we see that IST methods perform best
across all three metrics on the Birds, Flwrs, Aircrft, and
Textres dataset, but is inconsistent on the Cars and CFAR
datasets. Averaging algorithms, in particular FedAvg, fare
better on these two datasets. As we also addressed in the
main paper, increasing client participation does not consis-
tently nor significantly increase accuracies and generally in-
creases the GFLOP and GB costs.

However, we note that moving from 100 clients to the
1000 client population cases, the final accuracies greatly
increase across all algorithms and datasets, and are more
closely aligned with the final accuracies of the i.i.d. cases.
This effect merits further investigation, although we believe
this phenomenon is due to the increased population mitigat-
ing the effects of non-i.i.d. data.

4. Hyperparameter Tuning
All hyperparameter tuning was done on the Birds dataset

and in the interest of off-shelf performance we maintained
the same sets of parameters for all other datasets. We have
two separate sets of parameters for optimal communica-
tion and for FLOP usage due to potential trade-offs when



(a) Final accuracies
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 61.0 55.6 89.5 40.1 69.3 65.4
FedProx 58.0 48.1 89.1 37.7 66.2 60.5
MOON 59.2 50.9 86.4 37.3 66.1 61.4

FedAdam 51.4 31.8 80.1 29.5 54.4 45.5
FedNova 58.7 46.6 87.9 36.3 63.7 60.0
FedFull 1.5 0.9 3.0 1.6 4.1 1.2

IST 66.6 58.1 89.0 39.9 69.6 55.6
ISTProx 67.8 56.6 90.4 43.6 69.5 58.9

(b) Communication (GB) to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg FAIL 194 144 508 96 142
FedProx FAIL FAIL 157 FAIL 377 399
MOON FAIL FAIL 249 FAIL 319 214

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova FAIL FAIL 469 FAIL 843 1031
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 183 279 129 644 115 FAIL
ISProx 150 FAIL 148 318 143 FAIL

(c) GFLOPs to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg FAIL FAIL 7057 FAIL 6222 FAIL
FedProx FAIL FAIL 630 FAIL 1507 1597
MOON FAIL FAIL 1321 FAIL 1359 1815

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova FAIL FAIL 9392 FAIL 16877 20625
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 1400 FAIL 367 2610 754 FAIL
ISTProx 602 FAIL 594 1274 572 FAIL

Table 1: Skewed data results, 100 sites, 30% participation.

optimizing for one over the other, although in practice we
find many cases where one set of parameters work best for
both. We consider the number of local rounds of stochas-
tic gradient descent as a hyperparameter with either 1, 5,
or 25 iterations. Other hyperparameters are algorithm spe-
cific. Unless otherwise stated, we selected the parameters
by table-scanning all combinations of possible hyperparam-
eter configurations and optimizing on each of FLOP and GB
transferred. We detail each method and the choices of hy-
perparameters below:

4.1. FedAvg

FedAvg does not have any other hyperparameter besides
local training rounds. We find that FedAvg performs bet-
ter on both communication and FLOP usage with 25 local
iterations.

(a) Final accuracies
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 71.5 56.4 95.6 46.2 73.0 72.7
FedProx 70.2 50.1 95.4 45.7 71.9 71.7
MOON 70.3 48.0 95.1 45.7 71.7 71.5

FedAdam 47.2 28.2 82.5 22.7 48.2 42.6
FedNova 70.8 47.1 95.7 46.2 71.9 74.1
FedFull 1.0 0.7 1.7 1.3 3.3 1.3

IST 73.3 50.8 95.8 46.8 75.0 59.9
ISTProx 73.7 50.3 96.1 48.1 68.2 61.7

(b) Communication (GB) to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 122 74 36 162 65 92
FedProx 141 FAIL 44 191 79 128
MOON 137 208 44 220 69 129

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova 377 478 113 465 146 234
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 92 FAIL 29 343 133 FAIL
ISTProx 85 FAIL 26 254 122 FAIL

(c) GFLOPs to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 12243 7410 3586 16190 6523 9175
FedProx 563 FAIL 176 766 317 513
MOON 1239 FAIL 380 1275 546 917

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL
FedNova 7534 9568 2263 9307 2924 4682
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 366 FAIL 115 1372 532 FAIL
ISTProx 342 FAIL 104 1018 487 FAIL

Table 2: Skewed data results, 1000 sites, 2% participation.

4.2. FedProx

FedProx has proximal hyperparameter µ ∈
[0.05, 0.1, 0.15, 0.2]. For optimizing both FLOP and
communication we find that µ = 0.2 and 1 local round of
training does best on both metrics.

4.3. FedFull

We reuse the choice of µ = 0.2 from FedProx, but we
find that 1 local iteration no longer works due to training
the full model that a single batch is insufficient. We chose
5 local iterations for all cases as we found 25 too slow, but
in either case the method generally times out due to a single
communication round requiring too many FLOPs.

4.4. MOON

MOON has a weight hyperparameter for its contrastive
term, similar to that of the proximal term used in FedProx,



(a) Final accuracies
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 71.6 55.6 95.6 46.2 71.9 74.0
FedProx 70.3 48.1 95.8 46.5 72.9 72.8
MOON 70.6 50.9 95.6 46.2 71.5 72.9

FedAdam 60.0 45.0 89.5 35.2 60.3 55.0
FedNova 71.4 46.6 95.2 46.2 72.5 74.9
FedFull 0.9 0.7 1.0 1.0 6.5 1.5

IST 74.5 58.1 96.3 49.2 75.7 64.8
ISTProx 74.1 56.6 96.5 49.9 75.8 65.8

(b) Communication (GB) to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 369 178 91 693 146 190
FedProx 389 FAIL 103 569 158 271
MOON 381 183 111 641 157 272

FedAdam FAIL FAIL 213 FAIL FAIL FAIL
FedNova 982 1821 275 1735 405 729
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 130 411 31 670 137 FAIL
ISTProx 110 FAIL 30 558 58 FAIL

(c) GFLOPs to threshold acc.
Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 11958 FAIL 4141 FAIL 4921 8811
FedProx 1557 FAIL 412 2278 633 1083
MOON 3152 FAIL 751 5752 1422 2336

FedAdam FAIL FAIL 5875 FAIL FAIL FAIL
FedNova 19646 36432 5509 34723 8112 14594
FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 569 FAIL 136 2495 231 FAIL
ISTProx 441 FAIL 120 2232 233 FAIL

Table 3: Skewed data results, 1000 sites, 6% participation.

ISTProx, and FedNova. However this hyperparmater has
range µ ∈ [1, 5, 10]. The contrastive term also has a tem-
perature parameter τ ∈ [0.1, 0.5, 1].

For FLOP optimized run, we choose with 1 local round,
µ = 1, τ = 0.5

For communication optimized run, we choose with 5 lo-
cal rounds, µ = 10, τ = 0.1

4.5. FedNova

FedNova also uses proximal hyperparameter µ ∈
[0.05, 0.1, 0.15, 0.2] and we reuse the choice µ = 0.2 along
with a choice of 5 local training rounds. Additionally, Fed-
Nova has a parameter τeff , the effective number of local
training rounds. We use the recommended choice for τeff
in [11], in the case of a nonzero proximal term, of dividing
our local rounds by the number of participating clients.

4.6. FedAdam

In the Adam algorithm of FedAdam, we use the stan-
dard recommended settings [3, 9] of β1 = 0.9, β2 = 0.99
for the momentum and RMSProp weight decays. We
chose the adaptability parameter τ = 0.01 from a range
of τ ∈ [10−2, 10−3, 10−4, 10−5, 10−6]. We chose a local
learning rate of 0.03 and global learning rate of 0.01 both
from a range [0.1, 0.03, 0.01, 0.003]. For FLOP optimized
FedAdam, we chose local rounds of 5. For communication
optimized, we chose local rounds of 25

4.7. IST

IST has the local model size as a parameter. Here we
tuned the central model size in the case of 10 client devices
from [1000, 1500, 2000, 3000] and found that 3000 had the
best final accuracy. Therefore we chose 300 as the local
model size. Unlike other hyperparameters, we did not tune
this to optimize for FLOPs or bytes. We found that 1 lo-
cal round has best performance on both FLOPs and bytes
transferred.

4.8. ISTProx

We reuse the 300 local model size in IST. Like FedProx,
ISTProx has a proximal term µ ∈ [0.05, 0.1, 0.15, 0.2]. We
did not see much of an impact with the proximal term on
IST as it does with FedProx, but µ = 0.2 is still consistently
the best choice on both metrics in our tuning along with
training on 1 local round.
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