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A. Overview
This supplementary material consists of:

• The implementation details on the training and testing
process (Sec. B);

• Comparison with SDEdit. (Sec. C)

• Ablation study on the phasic factor Ts in m(t), the pa-
rameters in ICSG and DDC loss (Sec. D);

• The theoretical analysis and more experiments on
our iterative cross-domain structure guidance strategy
(ICSG). (Sec. F)

• The theoretical analysis of our directional distribution
consistency loss. (Sec. G)

B. Implementation Details
B.1. Training Details

In our diffusion model [6], we set the maximum step to
be 1000. We set the phasic factor Ts in m(t) = 1

1+e−(t−Ts)

to 300 and the parameter α in w(t) = 1 − ( t
T )

α to 3. We
start training from a pre-trained diffusion model with cosine
noise schedule [10] on the source dataset, and fine-tune it
with our phasic content fusing strategy and corresponding
loss functions. Using the pre-trained Unet network, we first
train our phasic content fusion model with only the diffu-
sion loss Ldif on the source dataset, with a batch size of 8
and a learning rate of 1e−4 for 1000 iterations, to avoid in-
terference from random weights in the early training stage.

After training the phasic content fusion module, we train
the entire model with the final loss function L (Equation (7)
in the main paper), with a batch size of 8 and a learning rate
of 1e−4. We set the hyperparameters λDDC and λstyle to 1.

*Equal contributions.
†Corresponding author.

Method FFHQ→ Sketches FFHQ→ Sketches
FID IS ↑ IC-L ↑ SCS ↑ FID IS ↑ IC-L ↑ SCS ↑

SDEdit (400) 82.14 1.95 0.43 0.47 154.99 1.85 0.45 0.50
SDEdit (500) 77.33 1.90 0.40 0.40 144.42 1.91 0.43 0.47
SDEdit (600) 70.96 1.88 0.38 0.33 137.79 1.93 0.37 0.44

PCF Only 57.62 2.11 0.52 0.51 137.79 2.70 0.60 0.69
Full Model 47.42 2.36 0.56 0.62 119.65 3.41 0.63 0.84

Table 1. Comparison results between our model and SDEdit
with different nosing steps (400, 500 and 600) on FID, IS, IC-
LPIPS and SCS metrics.

B.2. Testing Details

After training, we test our model with our iterative cross-
domain structure guidance (ICSG) strategy. For the style
enhancement factor K in ICSG, we set K = 2 for FFHQ [8]
→ Sketch [13], and K = 1 otherwise. Furthermore, for an
input image x, we add 800-step noise into it as the starting
point xM , and employ ICSG in the denoising step until the
stop step tstop (tstop = 500 for FFHQ [8] and tstop = 200
for LSUN Church [14]). Note that a wide range of the stop
step tsteop and style enhancement factor K have a good
performance in few-shot domain adaption as illustrated in
Sec. D.2. We only choose a relatively better parameter set-
ting in the testing stage.

C. Comparison with SDEdit
SDEdit [9] is a model that maintains the content informa-

tion during domain adaption by adding a t-step noise into a
source image and denoise it. In comparison, our model uti-
lize phasic content fusion (PCF) module to keep the content
information. Different from SDEdit which only keeps the
content information in the noised image and has no further
contents injected during the denoising stage, our PCF con-
stantly fuses the images in the denosing process with the
features from source image using a three-layer convolution
network, thereby aiding our model in autonomously acquir-
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Figure 1. Ablation study on Ts, the phasic factor in m(t) on FFHQ → Cartoon [12]. When Ts = 800, the model only learns the
target-domain details, ignoring the global style. When Ts = 0, the model learns the style and content information in the whole process,
which leads to failed style transfer at t-small, causing an unstable training which generates artifacts and rough details in the output images.

ing content information from the original images. To further
validate the effectiveness of our PCF, we compare our PCF
with SDEdit in content preservation and generation quality.

In addition to the Inception Score (IS), Structural Con-
sistency Score (SCS), and Intra-cluster pairwise LPIPS dis-
tance (IC-LPIPS) metrics employed in the main paper, we
also incorporate the Fréchet Inception Distance (FID) [5] to
measure the similarity between the features of the source
data and the generated data according to their mean values
and covariance. A lower FID suggests generated data is
similar to source data with high diversity and realism.

In order to facilitate a more effective comparison be-
tween PCF and SDEdit, we refrain from utilizing the ICSG
module for contour preservation (PCF only) and substitute
our PCF by SDEdit with different noising steps. We com-
pute the FID, IS, IC-LPIPS and SCS scores in Tab. 1, where
the noising step of SDEdit ranges from 400 to 600 (the rec-
ommended parameter in its paper). It can be seen that our

PCF outperforms SDEdit in terms of generation quality and
diversity.

D. Ablation Study

D.1. Ablation Study on The Phasic Factor Ts

The phasic factor Ts in m(t) is an important parameter
that influences the generated results. A large Ts leads to the
failure in style transfer since there are only M − Ts steps
to transfer the style. Similarly, a small Ts leads to failure
in capturing target-domain details, causing rough details in
the generated images. Moreover, when t is too small, the
failure in style transfer also leads to an unstable training
process which generates artifacts in the output images. To
validate this, we conducted an ablation study on the phasic
factor Ts and show the results in Fig. 1.

It can be seen that when Ts = 800, the model only
transfers the local details in the target domain, ignoring the
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Figure 2. Ablation Study on the stop step ts and the repeating factor K in style enhancement module with the filtering factor N = 8.
As tstop or K grows, the generated image shares less contents with the source image. When t and K is small, the model cannot eliminate
the influence of the source image, i.e., generating wrong color in the output image.
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Figure 3. Ablation Study on the stop step ts and the filtering factor N with the repeating factor K = 2. As tstop or N grows, the
generated image shares less contents with the source image.

global style. When Ts = 0, the model suffers from gener-
ating many artifacts, and the generated images all seem to
be rough. Thus, we chose Ts = 300 as our default setting,
which balances both style transfer and detail capturing.

Moreover, we also compute the FID scores between the

cartoon dataset and our generated data with different Ts.
The results are shown in Tab. 2. It can be seen that when Ts

ranges from 200 to 400, the FID scores are similar, indicat-
ing that a wide range of Ts result in a good performance.



Ts 0 100 200 300 400 500 600 700 800

FID 136.51 137.00 125.46 119.65 123.75 145.62 157.11 161.40 155.93

Table 2. Ablation study on Ts, the phasic factor in m(t) on FFHQ
→ Cartoon [12]. We evaluate the FID between the generated im-
ages and the cartoon dataset. It can be seen that when Ts ranges
from 200 to 400, the FID scores are similar, indicating that a wide
range of Ts result in a good performance.

Model Ours IDC loss RSSA loss NADA loss

Sketches 47.42 146.32 125.77 88.76
Cartoon 119.65 180.28 171.99 144.57

Table 3. Quantitative comparison between our DDC loss and
the losses in IDC, RSSA and StyleGAN-NADA.

Source Ours IDC RSSA StyleGAN-NADA

Ours IDC RSSA StyleGAN-NADA

FFHQ → Sketches

FFHQ →  Cartooon

Source

Figure 4. Qualitative comparison results between our DDC loss
and the losses in IDC, RSSA and StyleGAN-NADA.

D.2. Ablation Study on ICSG

Our iterative cross-domain structure guidance strategy
(ICSG) comprises three key parameters: the repeating fac-
tor K of the style enhancement module, the filtering factor
N , and the stop step tstop. To demonstrate a clear com-
parison among different parameter values, we conducted an
experiment on the FFHQ→ Cartoon task.

Firstly, we investigate the influence of the repeating fac-
tor K and stop step tstop on the output of ICSG, as shown
in Fig. 2 with N = 8. Next, we examine the impact of the
filtering factor N and stop step tstop on the output of ICSG,
as illustrated in Fig. 3 with K = 2. (It should be noted
that the default setting in our method is K = 2, N = 8,
and tstop = 500 here) We observed that as K, tstop, or
N increases, the model captures more style in the target
domain but loses more content information and local struc-
tures. When both K and tstop are small, the model can-
not effectively eliminate the influence of the source image
in terms of original color and texture. In summary, a big-
ger K and tstop enhance the stylization effect and a smaller
K, tstop and N keep more content information. In general,
a wide range of parameter values near our default setting
(K = 2, N = 8, and tstop = 500) yield favorable outcomes
as illustrated in Fig. 2 and 3, indicating that our model is not
too sensitive to the parameters.

E. More Ablation Study on DDC Loss
We compare our DDC loss with the losses in IDC [11],

RSSA [16] and StyleGAN-NADA [3]. For a fair compar-
ison, we exclusively substitute the DDC loss in our model
with their losses, and keep the other conditions unchanged.
The comparison results are shown in Tab. 3 and Fig. 4.
It can be seen that our DDC loss outperforms the other
distribution-consistency losses in diffusion-based few-shot
domain adaption.

F. Details of Iterative Cross-domain Structure
Guidance (ICSG)

F.1. Far More Than Few-shot Image Translation

In our main paper, we introduce a novel iterative cross-
domain structure guidance strategy (ICSG) for image sam-
pling, which helps to retain structural information. The
proposed ICSG is not limited to few-shot image transla-
tion tasks but can be applied to any image-to-image transla-
tion task on any source and target domains. In this section,
we aim to demonstrate the effectiveness of ICSG and show
more experiments on image-to-image translation.

F.2. Derivation of ICSG

In this section, we provide theoretical proof derivations
to explain why our method is effective. For the sake of con-
venience, we define the following notations:

Definition 1 We define the denoising process Θt as:

Θt : R
D −→ RD

xt 7→ xt−1

Θt(xt) =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ) + σtz ∼ pθ(xt−1|xt) ,

where D is the dimension of the image, and z is a random
variable from standard normal distribution.

Definition 2 We define the forward process Φt as:

Φt : R
D −→ RD

x0 7→ xt

Φ(x0) = xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ ∼ q(xt|x0) .

Definition 3 We define the backward process Ψt as:

Ψt : R
D −→ RD

xt 7→ x̂0

Ψt(xt) =
1√
ᾱt

(xt −
√
1− ᾱtϵθ) ∼ pθ(x̂0|xt).



Here, x0 denotes the output image in the target domain,
and y0 denotes the source-domain image with the target
structure ϕN (y0). Our ICSG can be defined as follows:

ICSG(xt−1|xt, y0) = Θt(xt) + ϕN (SE(y0))− ϕN (Θt(xt))

where SE(y0) = Θt ◦ (Φt ◦Ψt)
n ◦ Φt(y0) ,

where (Φt◦Ψt)
n is the style enhancement module. We have

the following theorem:

Theorem 1 With our ICSG, the generated image x0 shares
the same structure with the reference image y0.

Ex0∼pt(data)
(ϕN (x0)) = Ey0∼ps(data)

(ϕN (y0)) , (1)

where pt(data) is the target data distribution, and ps(data) is
the source data distribution. This indicates that the struc-
ture of the output image x0 is the same as that of the refer-
ence image y0.

Proof 1. When t is small, Ψt−1(xt−1) is very close to x0

and ϕN (x) further blurs them. Thus, we can approximate
ϕN (x0) as ϕN (Ψt−1(xt−1)).

Ex0∼pt(data)
(ϕN (x0))

≈ E(ϕN (Ψt−1(xt−1)))

= E(ϕN (Ψt−1(Θt(xt) + ϕN (SE(y0))− ϕN (Θt(xt)))))

= E(ϕN (Ψt−1(Θt(xt)− ϕN (Θt(xt))))) · · ·PartI

+E(ϕN (Ψt−1(ϕN (SE(y0)))) . · · ·PartII

Regarding PartI , we can utilize the linear properties of
ϕN and Ψt−1, which yields:

PartI =E(ϕN (Ψt−1 ◦Θt(xt)−Ψt−1(ϕNs(Θt(xt)))))

=ϕN (E(Ψt−1(
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ) + σtz))

−E(Ψt−1(ϕNs
(Θt(xt)))))

=ϕN (E(
1
√
αt

Ψt−1(xt)−
1
√
αt

Ψt−1(ϕNs
(xt))))

=
1
√
αt

ϕN (E(Ψt−1(xt)−Ψt−1(ϕNs(xt))))

≈0 ,

note that E(ϵθ) = 0 and E(z) = 0. Furthermore, the last
approximation holds, given that αt is close to 1 when t is
small and our filtering factor N is not large (we have set N
to be 8).

Regarding Part II, when t is small, Ψt−1(yt−1) is in close
proximity to y0, and ϕN (x) further blurs them. Therefore,
we have:

Ψt−1(ϕN (SE(y0)) = ŷ0

PartII = E(ϕN (ŷ0)) ≈ E(ϕN (y0)) .

Thus, we have demonstrated that:

Ex0∼pt(data)
(ϕN (x0)) = Ey0∼ps(data)

(ϕN (y0)) . (2)

F.3. Algorithm

The process of our ICSG can be summarized in Alg. 1.

Algorithm 1 ICSG for image-to-image translation
Input: Source image x and reference image y0
Output: Generated image x0

1: xM ∼ q(xM |x)
2: for t = M, ..., 1 do
3: z ∼ N (0, I)
4: if t ≥ tstop then
5: yt ∼ q(yt|y0)
6: for i = 1, ...,K do
7: ŷ0 ∼ pθ(ŷ0|yt)
8: ŷt ∼ q(ŷt|y0) ▷ StyleEnhancement
9: yt ← ŷt

10: end for
11: y′t−1 ∼ pθ(yt−1|yt)
12: x′

t−1 ∼ pθ(xt−1|xt)
13: xt−1 ← x′

t−1 + ϕN (y′t−1)− ϕN (x′
t−1)

14: end if
15: xt−1 ∼ pθ(xt−1|xt)
16: end for
17: return x0

F.4. Comparison on Image-to-image Translation

In this section, we present additional experimental re-
sults on the image-to-image translation task. Specifi-
cally, we compare our proposed method with two exist-
ing diffusion-based image-to-image translation methods,
namely EGSDE [15] and ILVR [1], on cat-to-dog [2], male-
to-female [7] and wild-to-dog [2] image-to-image transla-
tion task. To ensure a fair comparison, we use the pretrained
diffusion model provided in the source code of EGSDE
for all experiments and set the default parameters for both
EGSDE and ILVR.

Fig. 5 shows the image translation results obtained by
our proposed ICSG method. It can be seem that our model
performs well in terms of both domain translation and struc-
ture preservation.

To provide a more comprehensive comparison, we
also compare our method with state-of-the-art methods
EGSDE [15] and ILVR [1]. We use the pretrained diffu-
sion model as a baseline, which adds 700-step noise to x0

and denoises it. For ILVR, we use filtering factors N of
4 and 32, which were effective in their paper. Moreover,
since none of our method, ILVR, nor the fine-tuned model
relies on additional classifiers, we conduct experiments on
EGSDE with and without a classifier separately. The com-
parison results are shown in Fig. 6. The fine-tuned model
loses much of the structural information after denoising.
As for ILVR, when the filtering factor N = 32, the trans-
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Figure 5. Our ICSG results on male-to-female, cat-to-dog and wild-to-dog image-to-image translation. The generated results achieve good
performance in both structure preservation and domain translation.

lated images lose much structural information as well, and
when N = 4, it tends to reconstruct the source images.
There is no distinct difference between the two EGSDE re-
sults with and without a classifier. However, both of them
lose some structural information in the generated images.
In contrast, our model achieves good performance in both
structure preservation and image translation.

G. Analysis on Directional Distribution Con-
sistency Loss

Our directional distribution consistency loss explicitly
constrains the centrality consistency between the generated
distribution and the target distribution, while preserving the
structural consistency of the generated distribution and the
original distribution. In this section, we provide a theoret-
ical analysis to demonstrate that the prior loss functions in

the existing few-shot image generation tasks share similar
goals with our approach, but they suffer from the distri-
bution rotation problem, which can cause unstable training
and low training efficiency.

IDC [11] proposes a cross-domain distance consistency
loss that can maintain the structure of the generated distribu-
tion and prevent overfitting. Based on this, RSSA [16] fur-
ther designs a cross-domain spatial structural consistency
loss that can solve the drift problem of the generated sam-
ples in the target domain. However, both methods lack a
deep analysis of the loss functions and suffer from distri-
bution rotation during the training process. For the sake
of convenience in our derivation, we use the loss function
of IDC as an example for demonstration (since RSSA only
addresses the issue of distribution drift, its proof follows a
similar process).

To make our analysis clearer, we denote x and y as the
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Figure 6. Comparison between our method and existing methods based on diffusion model in domain transfer. From lest to right, the
images are: images from source domain, Our model, ILVR with filtering factor N = 32, ILVR with filtering factor N = 4, EGSDE,
EGSDE without classifier and the fine-tuned model.

latent variables, PS(x), PT (x) and PG(x) as the source, tar-
get and generated distribution, S(x), T (x) and G(x) as the
corresponding images of the latent variable x in the source,
target and generated distribution, and C(·) as the distribu-
tion center.

To minimize the few-shot loss in IDC, it satisfies:

cos(S(xi), S(xj)) = cos(G(xi), G(xj)) ∀xi, xj ∈ PS(x) .
(3)

Thus, the structure of the generated domain is fixed. The
generated distribution PG(x) can only rotate or move along
the axis that crosses the origin and distribution center C(G)
(note that when moving the distribution along the axis, the
scale of the distribution also varies.). So, the major concern
is to determine where the center of the generated distribu-
tion C(G) is located. Based on our analysis, we present the
following theorem:

Theorem 2 The center of the generated distribution C(G)
coincides with that of the target distribution C(T ) with the
adversarial loss and few-shot loss:∫

x

G(x)PG(x)dx =

∫
x

T (x)PT (x)dx . (4)

Proof 2 The adversarial loss in GANs[4] is to find a gen-
erator G that satisfies PG(x) = PT (x), which can be
transferred into: G(x) = T (x) , ∀x ∼ PT (x). In high-
dimensional space, we can employ cosine distance to mea-
sure the similarity. Then, we rewrite the goal of the adver-
sarial loss as:

G = argmin
G

Ex∼PT (x)|cos(G(x), T (x))− 1| .

According to Eq.(3), we can also rewrite the goal of the
few-shot loss functions as:

G = argmin
G

1

2
Ex,y∼PS(x)|cos(S(x), S(y))− cos(G(x), G(y))| .



Combining both the adversarial and few-shot loss to-
gether, we have the final optimization goal:

G = argmin
G

Ex∼PT (x)|cos(G(x), T (x))− 1|+

1

2
Ex,y∼PS(x)|cos(S(x), S(y))− cos(G(x), G(y))| .

(5)

In high-dimensional space, any tow points has almost the
same Euclidean distance, indicating the the modulus of the
each vector are extremely close, denote the modulus as

√
λ.

So, we transform Eq.(5) into:

G = argmin
G

∫
x

|G(x)T (x)− λ|PT (x)dx+

1

2

∫
x

∫
y

|S(x)S(y)−G(x)G(y)|PG(x)PG(y)dxdy .

(6)

Taking the gradient on G in Eq.(6) and with the symme-
try property of x and y, the optimal G∗ satisfies:∫

x

T (x)PT (x)dx−
∫
x

∫
y

G(x)PG(x)PG(y)dxdy = 0

⇐⇒
∫
x

T (x)PT (x)dx =

∫
x

G(x)PG(x)dx

∫
y

PG(y)dy

⇐⇒
∫
x

G∗(x)PG∗(x)dx =

∫
x

T (x)PT (x)dx .

(7)
The optimal generation distribution aligns with the cen-

ter of the target distribution (as shown in Eq.(7)). Once the
distribution center is fixed, the generated distribution can-
not shift along the axis that passes through the origin and
the center. Therefore, the scale of the generated distribution
matches that of the source distribution. Unfortunately, this
does not solve the issue of distribution rotation, which can
result in an unstable and ineffective training process.

In contrast, our directional distribution consistency loss
maintains the distribution center and structure explicitly and
any rotation or shift of the generated distribution result in an
increase of our loss function.
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