Supplementary Materials for PlankAssembly: Robust 3D Reconstruction from Three Orthographic Views with Learnt Shape Programs

Wentao Hu^{1,2†*} Jia Zheng^{3*} Zixin Zhang^{4*} Xiaojun Yuan⁴ Jian Yin^{1,2} Zihan Zhou³ ¹Sun Yat-Sen University ²Guangdong Key Laboratory of Big Data Analysis and Processing ³Manycore Tech Inc. ⁴University of Electronic Science and Technology of China

https://manycore-research.github.io/PlankAssembly

In this document, we show some statistics of the new benchmark dataset used in the paper (Section 1), conduct an ablation study on data augmentation (Section 2), and report the detailed numbers of experiment results (Section 3).

1. PlankAssembly Dataset

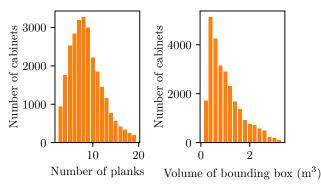


Figure 1. Statistics of the PlankAssembly dataset.

Figure 1 reports some statistics of our new benchmark dataset, including the number of planks per cabinet, and the volume of bounding boxes. Figure 3 shows more examples of the dataset.

2. Ablation Study on Data Augmentation

In deep learning, data augmentation is commonly used to improve the model's robustness to noises in the input. For our task, we have also experimented with data augmentation strategies by injecting noises into the inputs during training. Specifically, given the input views, we randomly select 15%of the edges. These edges are either deleted or modified by perturbing the endpoints along the edge direction.

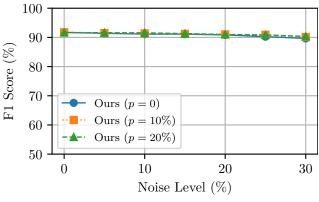


Figure 2. Ablation study on data augmentation.

In this experiment, we apply the data augmentation scheme to the training samples with probability p, where we set $p = \{0, 0.1, 0.2\}$. The results are shown in Figure 2. As one can see, injecting noises to the input during training appears to have only a marginal effect on the model's performance, with the model trained with p = 0.1 achieving slightly higher F1 scores than the other. It is worth noting that the model trained with p = 0 (*i.e.*, no data augmentation) performs well across a wide range of noise levels on the testing set. We hypothesize that this is partly due to the network's ability to learn flexible mappings between the input and output.

3. Detailed Numbers for Experiment Results

In Table 1, we report all precision, recall, and F1 score numbers for the experiment on the comparison to traditional methods (Section 5.2 and Figure 4 of the paper). We also report the number of failed cases. The first variant fails due to exceeding the time budget (5 minutes). The second variant fails if it does not produce any results.

In Table 2, we report all precision, recall, and F1 score numbers for the ablation studies (Section 5.3 and Figure 7

[†]Work done during internship at Manycore Tech Inc.

^{*}Equal contributions.

Methods	Precision	Recall	F1 Score	#Failed
	Noise	level 0%		
[1, 2], variant 1	95.14	93.56	94.07	518
[1, 2], variant 2	83.75	100.00	90.67	0
Ours	92.21	91.51	91.75	0
	Noise	level 5%		
[1, 2], variant 2	69.80	25.98	36.05	113
Ours	92.13	91.10	91.49	0
	Noise l	evel 10%		
[1, 2], variant 2	59.69	12.91	20.39	440
Ours	92.06	90.99	91.40	0
	Noise l	evel 15%		
[1, 2], variant 2	51.56	8.28	13.86	777
Ours	92.03	90.65	91.21	0
	Noise l	evel 20%		
[1, 2], variant 2	45.86	5.99	10.35	1039
Ours	91.89	90.43	91.03	0
	Noise l	evel 25%		
[1, 2], variant 2	42.71	4.98	8.80	1193
Ours	92.04	90.11	90.92	0
	Noise l	evel 30%		
[1, 2], variant 2	39.82	4.71	8.20	1285
Ours	91.46	89.19	90.14	0

Table 1. Comparison to traditiona	il methods on varying input nois	e
levels (Section 5.2 and Figure 4 o	of the paper).	

of the paper). We also report the number of failed cases. *Ours (sideface)* fails if no sidefaces are detected from input views.

References

- Hiroshi Sakurai and David C. Gossard. Solid model input through orthographic views. In ACM SIGGRAPH, pages 243– 252, 1983. 2
- [2] Byeong-Seok Shin and Yeong-Gil Shin. Fast 3d solid model reconstruction from orthographic views. *Comput. Aided Des.*, 30(1):63–76, 1998. 2

Methods	Precision	Recall	F1 Score	#Failed				
Noise level 0%								
Ours	92.21	91.51	91.75	0				
Ours (image)	83.29	81.66	82.34	0				
Ours (sideface)	92.45	91.86	92.02	0				
PolyGen	92.43	92.03	91.71	0				
Noise level 5%								
Ours	92.13	91.10	91.49	0				
Ours (image)	82.43	80.19	81.14	0				
Ours (sideface)	88.78	87.84	88.06	0				
PolyGen	91.99	91.41	91.10	0				
Noise level 10%								
Ours	92.06	90.99	91.40	0				
Ours (image)	81.42	78.52	79.76	0				
Ours (sideface)	85.19	83.05	83.75	0				
PolyGen	91.86	91.38	91.08	0				
	Noise le	evel 15%						
Ours	92.03	90.65	91.21	0				
Ours (image)	80.78	77.43	78.87	0				
Ours (sideface)	81.38	88.02	78.63	5				
PolyGen	91.70	90.80	90.68	0				
	Noise le	evel 20%						
Ours	91.89	90.43	91.03	0				
Ours (image)	79.64	75.44	77.27	0				
Ours (sideface)	74.73	68.50	70.85	15				
PolyGen	91.34	90.28	90.22	0				
Noise level 25%								
Ours	92.04	90.11	90.92	0				
Ours (image)	77.99	72.64	74.96	0				
Ours (sideface)	67.08	58.85	61.89	37				
PolyGen	90.88	89.27	89.42	0				
	Noise le	evel 30%						
Ours	91.46	89.19	90.14	0				
Ours (image)	77.25	70.67	73.53	0				
Ours (sideface)	59.87	49.28	53.21	93				
PolyGen	90.44	87.97	88.46	0				

Table 2. Ablation studies on the input sequence and the output sequence (Section 5.3 and Figure 7 of the paper).

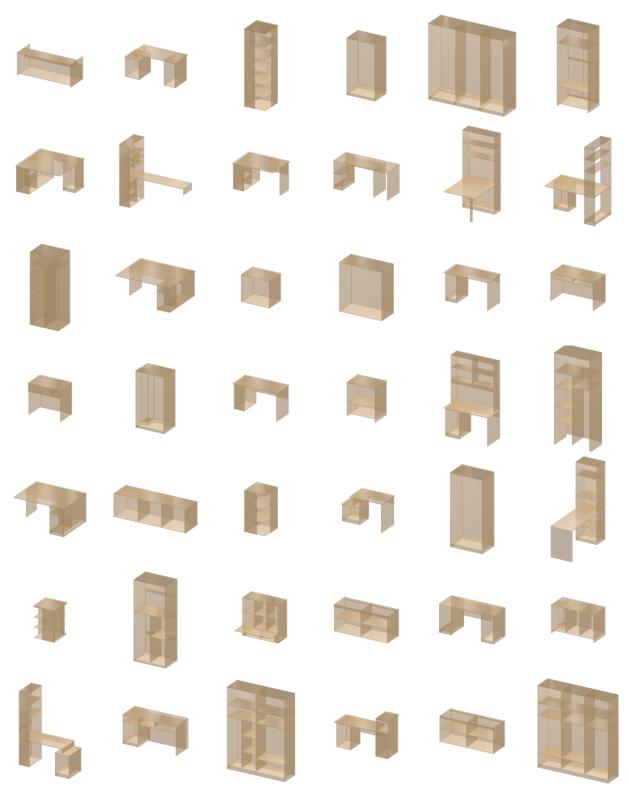


Figure 3. Example cabinet models in our PlankAssembly dataset.