
Supplementary Materials for
VL-PET: Vision-and-Language Parameter-Efficient Tuning

via Granularity Control

Zi-Yuan Hu1,3 Yanyang Li1 Michael R. Lyu1 Liwei Wang1,2*

1The Chinese University of Hong Kong 2Centre for Perceptual and Interactive Intelligence
3Shanghai Artificial Intelligence Laboratory

{zyhu22,yyli21,lyu,lwwang}@cse.cuhk.edu.hk

A. Dataset Statistics
For image-text tasks, we report the performance

on Karpathy test/test-dev/test-P/Karpathy test split for
VQA/GQA/NLVR2/MSCOCO. For video-text tasks, we
report the performance on test-public split for TVQA,
How2QA, TVC and YC2C from VALUE benchmark [15].
The detailed statistics of image-text and video-text datasets
are shown in Tab. 1 and Tab. 2, respectively.

B. Implementation Details
Combining a pre-trained vision model with a generative

PLM, we perform multi-task learning via unified text gen-
eration. Following [2], we use CLIP [18] as our frozen
vision encoder for offline visual feature extraction, and
BART-base [13] and T5-base [19] as our generative PLM
backbones for parameter-efficient tuning. A trainable vi-
sual projector (i.e., a trainable linear layer) is utilized to
project the visual features into the dimension space of text
embeddings. The projected visual features and text em-
beddings are subsequently concatenated as input into our
PLM backbone. For a fair experimental comparison, we
follow the setting of existing PET techniques [22, 21] to
adopt a shared-weight PET module for all downstream tasks
and use CLIP-ResNet101 [18, 5] as our vision encoder for
image-text tasks and CLIP (ViT-B/32) [18, 3] for video-text
tasks. Specifically, images are resized to 224× 224 at first,
and then 6 × 6 grid features are extracted by the last con-
volutional layer with an adaptive maximum pooling. Video
features are extracted offline at a fixed frame rate (one frame
per second) with a maximum length of 64.

We train the models for 20 epochs for both image-text
tasks and video-text tasks. The batch size is set as 500 for
BART-base on image-text tasks, 300 for T5-base on image-
text tasks, and 50 for BART-base on video-text tasks. We
use AdamW [16] as our optimizer to train the models and

*Corresponding author.

Dataset Statistics (#images / #QA pairs, #captions)
Train Validation Test

VQA [4] 113.2K/605.1K 5.0K/26.7K 5.0K/26.3K
GQA [8] 72.1K/943.0K 10.2K/132.1K 398/12.6K
NLVR2 [20] 103.2K/86.4K 8.1K/7.0K 8.1K/7.0K
MSCOCO [1] 113.2K/566.8K 5.0K/5.0K 5.0K/5.0K

Table 1. The statistics of four image-text datasets.

Dataset Statistics (#videos / #QA pairs, #captions)
Train Validation Test

TVQA [10] 17.4K/122.0K 2.2K/15.3K 2.2K/15.3K
How2QA [14] 24.5K/34.2K 3.1K/3.1K 3.1K/3.1K
TVC [11] 17.4K/86.7K 10.8K/43.6K 10.8K/43.6K
YC2C [24] 10.3K/10.3K 3.5K/3.5K 1.6K/1.6K

Table 2. The statistics of four video-text datasets.

Task Visual Input Text Input with Task Prompt Text Output

VQA image features vqa: [Q] [A]
GQA image features gqa: [Q] [A]
NLVR image features nlvr: [text] true/false
MSCOCO image features caption: [caption]

TVQA video features tvqa: [Q] [A]
How2QA video features how2qa: [Q] [A]
TVC video features tvc: [caption]
YC2C video features yc2c: [caption]

Table 3. Input-output formats with task prompts from [2, 22]. [Q]
denotes question, [A] denotes answer, [text] denotes text and
[caption] denotes captioning results.

apply a linear decay scheduler with a warmup ratio of 0.1.
We evaluate the last checkpoints of models. All experi-
ments are conducted on one A100 GPU (80G memory).
The average training time is 16 hours for BART-base on
image-text tasks, 18 hours for T5-base on image-text tasks,
and 18 hours for BART-base on video-text tasks.

Method Learning Rate Batch Size Epoch Other Hyper-Parameters

Full Fine-tuning 1× 10−4 500 20 -

BitFit [23] 1× 10−3 500 20 -
Prompt Tuning [12] 1× 10−3 500 20 prompt length Np = 40, prompt dimension dm = 800
Compacter [9] 1× 10−3 500 20 hidden dimension d = 96, Kronecker products k = 2
Hyperformer [17] 1× 10−3 500 20 hidden dimension d = 96, task dimension dp = 8
LoRA [7] 1× 10−3 500 20 hidden dimension d = 128
VL-Adapter [22] 1× 10−3 500 20 hidden dimension d = 96

VL-PETsmall 1× 10−3 500 20

encoders: r = 96, s = 1.0, Nh = 4; decoders: r = 96, s = 1.0, Nh = 1
VL-PETmiddleX 1× 10−3 500 20
VL-PETmiddleY 1× 10−3 500 20
VL-PETlarge 1× 10−3 500 20

Table 4. Hyper-parameters for image-text tasks with BART-base backbone. We follow the baseline settings of [22].

Method Learning Rate Batch size Epoch Other hyper-parameters

Full Fine-tuning 3× 10−4 300 20 -

BitFit [23] 3× 10−3 300 20 -
Prompt Tuning [12] 3× 10−3 300 20 prompt length Np = 40, prompt dimension dm = 800
LoRA [7] 3× 10−4 300 20 hidden dimension=150
VL-Adapter [22] 3× 10−4 300 20 hidden dimension d = 192
LST [21] 3× 10−3 300 20 r=4; all layers in side networks are kept

VL-PETsmall 3× 10−4 300 20

encoders: r = 192, s = 0.3, Nh = 4; decoders: r = 96, s = 1.0, Nh = 1
VL-PETmiddleX 3× 10−4 300 20
VL-PETmiddleY 3× 10−4 300 20
VL-PETlarge 3× 10−4 300 20

Table 5. Hyper-parameters for image-text tasks with T5-base backbone. We follow the baseline settings of [21].

Method Learning Rate Batch size Epoch Other hyper-parameters

Full Fine-tuning 1× 10−5 50 20 -

BitFit [23] 1× 10−4 50 20 -
Prompt Tuning [12] 1× 10−4 50 20 prompt length Np = 40, prompt dimension dm = 800
Compacter [9] 1× 10−4 50 20 hidden dimension d = 96, Kronecker products k = 2
LoRA [7] 1× 10−4 50 20 hidden dimension d = 128
VL-Adapter [22] 1× 10−4 50 20 hidden dimension d = 96

VL-PETsmall 7× 10−4 50 20

encoders: r = 96, s = 1.0, Nh = 4; decoders: r = 96, s = 1.0, Nh = 1
VL-PETmiddleX 7× 10−4 50 20
VL-PETmiddleY 7× 10−4 50 20
VL-PETlarge 7× 10−4 50 20

Table 6. Hyper-parameters for video-text tasks based on BART-base backbone.

C. Hyper-Parameters
For image-text tasks with the BART-base backbone, [22]

conduct a detailed hyper-parameter search to find the op-
timal settings for the baselines. However, it only reports
experimental results of one random seed. To strengthen the
reliability of these experiments, we summarize statistics of
three seeds with the hyper-parameters listed in Tab. 4.

For image-text tasks with the T5-base backbone, we
borrow the results of three seeds from [21]. The hyper-
parameters of the baselines are listed in Tab. 5.

For video-text tasks with the BART-base backbone, we
show the results of only one seed due to the submission limit
of the VALUE benchmark. The hyper-parameters are listed
in Tab. 6.

D. Effectiveness of Visual Features and Train-
able Visual Projector

In this section, we investigate the effectiveness of the vi-
sual features and a trainable visual projector on VL tasks.
We denote T as text, Noise as noise features sampled from

Input Params (%) VQA (%) GQA (%) NLVR2 (%) COCO (CIDEr) Avg.

VL-PETlarge (BART-base)
T 3.10 44.800.29 40.190.16 51.090.07 6.660.41 35.690.03

T + Noise 4.16 44.790.10 40.490.16 51.090.22 6.570.98 35.740.16

T + Frozen V 3.07 62.620.50 51.340.67 67.770.39 117.581.90 74.830.72

T + Trainable V 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

VL-PETlarge (T5-base)
T 6.70 44.900.12 40.620.11 51.210.09 4.810.77 35.390.19

T + Noise 7.31 44.850.18 40.360.02 51.220.09 6.451.81 35.720.42

T + Frozen V 6.65 64.300.20 53.180.55 69.900.68 117.900.37 76.320.44

T + Trainable V 7.31 66.950.21 56.060.21 73.420.46 121.660.06 79.520.21

Table 7. Effectiveness of visual features and visual projector. (T: text. Noise: noise features. V: visual projector.)

Method Params (%) VQA (%) GQA (%) NLVR2 (%) COCO (CIDEr) Avg.

VL-PETlarge with ∆Hvis 3.29 65.460.15 53.940.27 72.890.32 120.150.68 78.110.13

VL-PETlarge with scaled up ∆Hvis 3.47 65.570.03 53.700.70 73.150.41 120.000.24 78.110.12

VL-PETlarge with ∆Hvis and Gvis
large 3.47 65.500.13 54.030.44 73.350.18 120.710.43 78.400.03

VL-PETlarge 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

Table 8. Decomposing the visual projector on BART-base.

Method Updating Formula Params (%) VQA (%) GQA (%) NLVR2 (%) COCO (CIDEr) Avg.

VL-PET w/o granularity control H← H+∆H 2.97 65.220.14 53.350.39 72.650.44 120.190.68 77.850.34

VL-PETadd H← H+∆H+Glarge 4.16 65.100.05 53.260.26 71.850.19 121.261.19 77.870.26

VL-PETlarge H← Glarge ⊙ (H+∆H) 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

Table 9. Performance improvement effect of granularity-controlled mechanism.

a uniform distribution on the interval from 0 to 1, Trainable
V as visual features with a trainable visual projector and
Frozen V as visual features with a frozen visual projector.
We replace the standard model input (i.e., T + Trainable V)
with T (text-only), T + Noise, and T + Frozen V. In Tab. 7,
T + Trainable V outperforms other inputs by a large mar-
gin, demonstrating the effectiveness of visual features and
the trainable visual projector, as well as the importance of
VL alignment and modeling on VL tasks.

In Tab. 8, we also decompose the visual projector us-
ing multi-head modular modifications (denoted as ∆Hvis,
r=96, Nh=4) and the granularity control at large level (de-
noted as Gvis

large). Due to the different dimensions of visual
and text features, we have to remove the residual connec-
tion for ∆Hvis. The results indicate that simply scaling up
∆Hvis (from r=96 to r=192) dose not effectively improve
the performance, whereas introducing Gvis

large into ∆Hvis is
more effective. Although decomposing the visual projector
provides us more efficiency and effectiveness trade-offs, we
do not include it in the main paper for a fair competition
with the existing PET techniques (e.g., VL-Adapter).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Scaling Factor

77.0

77.5

78.0

78.5

79.0

79.5

80.0

Av
er

ag
e P

er
fo

rm
an

ce

VL-PETlarge (BART-base)
VL-PETlarge (T5-base)

Figure 1. Effectiveness of scaling factor for the encoders. Experi-
ments are conducted on image-text tasks based on different PLM
backbones with one seed.

Method Trainable
Params (%)

VQA
Acc. (%)

GQA
Acc. (%)

NLVR2

Acc. (%)
COCO

Cap. (CIDEr) Avg.

Backbone: BART-base

Without task prompts
VL-PETsmall 2.98 64.830.09 54.230.26 72.270.06 121.030.28 78.090.10
VL-PETmiddleX 2.98 65.140.16 54.550.09 72.770.27 120.910.33 78.340.07

VL-PETmiddleY 2.98 64.690.14 53.400.35 73.040.16 120.140.58 77.820.12

VL-PETlarge 4.16 65.780.08 54.450.32 72.900.36 121.460.36 78.650.22

With task prompts
VL-PETsmall 2.98 65.430.06 54.030.14 72.430.22 120.680.35 78.140.11

VL-PETmiddleX 2.98 65.540.09 54.530.15 72.660.17 120.720.51 78.370.14

VL-PETmiddleY 2.98 65.360.15 53.830.39 73.430.78 120.310.09 78.230.19

VL-PETlarge 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

Backbone: T5-base

Without task prompts
VL-PETsmall 4.51 65.670.31 56.090.29 73.540.63 120.511.11 78.960.57
VL-PETmiddleX 4.50 65.680.17 56.570.10 74.050.25 119.920.65 79.060.15

VL-PETmiddleY 4.50 65.750.34 56.350.41 73.930.60 119.841.08 78.970.28

VL-PETlarge 7.31 66.310.06 56.560.27 73.610.22 121.950.09 79.610.08

With task prompts
VL-PETsmall 4.51 65.880.31 54.961.01 72.640.09 120.050.41 78.380.37

VL-PETmiddleX 4.50 66.630.14 55.870.25 74.110.37 120.410.31 79.260.26

VL-PETmiddleY 4.50 66.620.20 55.870.13 73.910.45 120.260.40 79.170.08

VL-PETlarge 7.31 66.950.21 56.060.21 73.420.46 121.660.06 79.520.21

Table 10. Effectiveness of task prompts.

E. Performance Improvement Effect of
Granularity-controlled Mechanism

Granularity control can dynamically assign importance
weights to the intermediate hidden states. To fully in-
vestigate where the performance improvement is coming
from, we replace the element-wise product with addition
for Glarge on BART-base, denoted as VL-PETadd. The re-
sults (VL-PETlarge > VL-PETadd) in Tab. 9 verify that the
importance assignment is more effective than the added pa-
rameters in performance improvement. Moreover, we ob-
serve that VL-PETadd introduces more trainable parame-
ters but perform on par with VL-PET without granularity
control, as their updating formulas are equivalent to con-
ventional PET (Eq. (1)). These results further demonstrate
the effectiveness of the proposed granularity control.

F. Effectiveness of Scaling Factor

As mentioned in Sec. 3.2, the scaling factor is special-
ized for different PLMs. Our experimental results in Fig. 1
show that the optimal scaling factors for BART-base en-

coders and T5-base encoders are 1.0 and 0.3, respectively.

G. Unified Text Generation with Task Prompts

Inspired by [22, 21], we prepend a task-specific prompt
to the input sentence for each downstream task. The de-
tailed task prompts are listed in Tab. 3. We conduct exper-
iments to test the validity of these task prompts over three
seeds in Tab. 10. For the BART-base backbone, all VL-PET
modules with task prompts outperform those without task
prompts. However, for T5-base, some VL-PET modules
without task prompts exhibit superior performance com-
pared to those with task prompts. For a fair comparison with
state-of-the-art PET techniques, we still adopt task prompts
to facilitate multi-task learning via unified text generation
for our generative PLM backbones.

H. Scalability of VL-PET Modules

We scale up the trainable parameters of the VL-PET
modules by increasing the projected hidden dimensions r
of the Encoder VL-PET modules in BART-base. All scaled

Method Params (%) VQA (%) GQA (%) NLVR2 (%) COCO (CIDEr) Avg.

VL-PETsmall (r = 96) 2.98 65.430.06 54.030.14 72.430.22 120.680.35 78.140.11

r = 144 3.58 65.870.12 54.050.21 72.760.09 121.220.40 78.480.07

r = 192 4.16 66.140.16 54.730.18 72.630.23 121.461.38 78.740.34

VL-PETmiddleX (r = 96) 2.98 65.540.09 54.530.15 72.660.17 120.720.51 78.370.14

r = 144 3.57 66.080.10 54.820.29 72.820.23 121.050.11 78.700.11

r = 192 4.16 66.230.06 54.550.33 73.570.34 122.010.65 79.090.23

VL-PETmiddleY (r = 96) 2.98 65.360.15 53.830.39 73.430.78 120.310.09 78.230.19

r = 144 3.57 65.580.18 54.060.32 73.020.52 120.590.26 78.310.30

r = 192 4.16 65.940.06 54.290.40 73.530.25 120.890.30 78.660.18

VL-PETlarge (r = 96) 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

r = 144 5.31 66.470.10 55.070.25 73.210.15 122.050.58 79.200.13

r = 192 6.43 66.720.06 54.610.31 73.550.88 122.160.18 79.260.12

Table 11. Scalability of VL-PET Modules. (r: the projected hidden dimension of the encoder VL-PET modules.)

Method Trainable
Params (%)

VQA
Acc. (%)

GQA
Acc. (%)

NLVR2

Acc. (%)
COCO

Cap. (CIDEr) Avg.

Backbone: BART-base

Random Gaussian Initialization (Default)
VL-PETsmall 2.98 65.430.06 54.030.14 72.430.22 120.680.35 78.140.11

VL-PETmiddleX 2.98 65.540.09 54.530.15 72.660.17 120.720.51 78.370.14

VL-PETmiddleY 2.98 65.360.15 53.830.39 73.430.78 120.310.09 78.230.19

VL-PETlarge 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

Zero Initialization
VL-PETsmall 2.98 65.330.21 53.960.15 72.480.10 121.050.28 78.210.13

VL-PETmiddleX 2.98 65.490.06 54.280.20 73.010.47 120.360.26 78.290.15

VL-PETmiddleY 2.98 65.210.20 53.860.53 72.841.21 120.380.65 78.070.30

VL-PETlarge 4.16 66.180.13 54.440.58 72.990.69 121.910.52 78.880.35

Backbone: T5-base

Random Gaussian Initialization
VL-PETsmall 4.51 66.800.22 56.150.22 74.250.59 120.570.81 79.440.45

VL-PETmiddleX 4.50 66.330.47 55.890.05 74.230.21 119.790.59 79.060.31

VL-PETmiddleY 4.50 66.520.12 55.520.65 73.960.45 120.990.21 79.250.05

VL-PETlarge 7.31 66.780.10 55.620.18 73.210.15 121.120.36 79.190.08

Zero Initialization (Default)
VL-PETsmall 4.51 65.880.31 54.961.01 72.640.09 120.050.41 78.380.37

VL-PETmiddleX 4.50 66.630.14 55.870.25 74.110.37 120.410.31 79.260.26

VL-PETmiddleY 4.50 66.620.20 55.870.13 73.910.45 120.260.40 79.170.08

VL-PETlarge 7.31 66.950.21 56.060.21 73.420.46 121.660.06 79.520.21

Table 12. Experimental results of different weight initialization strategies.

VL-PET modules outperform the unscaled ones in Tab. 11,
indicating the scalability of our VL-PET framework.

I. Weight Initialization

In Tab. 12, we show the experimental results over three
seeds with two popular weight initialization strategies, i.e.,
random Gaussian initialization and zero initialization, for

both BART-base and T5-base backbones. Random Gaus-
sian initialization is widely used in PET techniques to ini-
tialize the weight of PET modules from a Gaussian distri-
bution, while some PET techniques [7] utilize zero initial-
ization to set the up projection layers of the PET modules
as zero. Based on Tab. 12, it can be inferred that random
Gaussian initialization is more appropriate for BART-base
and zero initialization for T5-base. Therefore, we employ

Method Trainable
Params (%)

VQA
Acc. (%)

GQA
Acc. (%)

NLVR2

Acc. (%)
COCO

Cap. (CIDEr) Avg.

Backbone: BART-base
Granularity-controlled Mechanism:Glarge

Down Multi-head Modular Modifications
(used in the main paper)
Nh = 2 4.16 66.200.12 54.740.43 72.880.43 121.530.64 78.840.26

Nh = 4 4.16 66.170.27 55.110.17 73.430.35 122.030.46 79.180.14

Up Multi-head Modular Modifications
Nh = 2 4.16 66.160.12 54.880.21 73.190.13 121.690.62 78.980.14

Nh = 4 4.16 66.150.13 55.000.36 73.190.27 121.440.73 78.950.23

Down-Up Multi-head Modular Modifications
Nh = 2 4.16 66.240.10 54.730.24 72.810.21 121.560.15 78.840.07

Nh = 4 4.16 66.180.16 54.600.27 73.170.42 122.050.20 79.000.10

Down-Up-Pair Multi-head Modular Modifications
Nh = 2 3.86 65.860.04 54.510.36 72.980.19 121.650.21 78.750.07

Nh = 4 3.72 65.700.09 54.240.12 72.430.35 122.760.33 78.280.20

Table 13. Experimental results of multi-head modular modifications with various numbers of heads.

random Gaussian initialization for BART-base and zero ini-
tialization for T5-base by default in this work.

J. More Designs for Multi-head Modular Mod-
ification

We propose a multi-head modular modification ∆H′ ∈
RN×d of length N and dimension d in the main paper,
which is formulated as follows:

∆H′ = ϕ(Concat(X′W
(1)
down, · · · ,X

′W
(Nh)
down))Wup, (1)

where Nh is the number of heads, X′ ∈ RN×d is the input,
W

(i)
down ∈ Rd× r

Nh is a down projection layer for the i-th
head, ϕ is the GELU function [6], Wup ∈ Rr×d is a up
projection layer and r is the projected hidden dimension.

Since the multi-head idea is applied to the down projec-
tion layer in the main paper, we can call this type of multi-
head modular modification as down multi-head modular
modification. As the multi-head idea can be applied to any
linear projection within a modular modification, it yields a
series of variant designs. In this section, we present addi-
tional designs of multi-head modular modification, such as
up multi-head modular modification, down-up multi-head
modular modification and down-up-pair multi-head modu-
lar modification. The primary difference among these four
designs lies in where the multi-head idea is employed.

For up multi-head modular modification, we apply the
multi-head idea to the up projection layer and describe it as
follows:

∆H′ = Concat(ϕ((X′Wdown))W
(1)
up , · · · ,

ϕ((X′Wdown))W
(Nh)
up),

(2)

where Wdown ∈ Rd×r is a down projection layer and
W

(i)
up ∈ Rr× d

Nh is a down projection layer for headi.

For down-up multi-head modular modification, we ap-
ply the multi-head idea to the down projection layer and up
projection layer, respectively. The formulation is described
as follows:

∆H′
down = ϕ(Concat(X′W

(1)
down, · · · ,X

′W
(Nh)
down)),

∆H′ = Concat(∆H′
downW

(1)
up , · · · ,∆H′

downW
(Nh)
up),

(3)

where ∆H′
down ∈ RN×r is an intermediate output.

For down-up-pair multi-head modular modification, we
formulate it as follows:

∆H′(i)
pair = ϕ(X′W

(i)
down-pair)W

(i)
up-pair,

∆H′ = Concat(∆H′(1)
pair, · · · ,∆H′(Nh)

pair),
(4)

where W
(i)
down-pair ∈ Rd× r

Nh is a down projection layer,

W
(i)
up-pair ∈ R

r
Nh

× d
Nh is a up projection layer and ∆H′(i)

pair ∈
RN× d

Nh is an intermediate output for headi.
Similar to the usage of multi-head modular modifica-

tions in the main paper, we perform experiments on image-
text tasks with BART-base backbone for these four multi-
head modular modifications with our proposed granularity-
controlled mechanism at a large level.

As shown in Tab. 13, the down multi-head modular mod-
ification with Nh = 4 achieves the best performance in the
experiment, which is adopted in the main paper. We ob-
serve that even the worst down-up-pair multi-head modular
modification still outperforms the state-of-the-art PET tech-
niques (e.g., VL-Adapter). Moreover, down-up-pair multi-
head modular modification significantly reduces the number
of trainable parameters as the number of heads increases,
indicating a promising direction for further parameter re-
duction with a minimal impact on performance.

K. Limitations
In this section, we discuss some limitations of our work.

• We perform extensive experiments and analysis on
image-text tasks and video-text tasks. However, the
video-text experiments are conducted with only one
seed due to the submission limit of the VALUE bench-
mark, which may affect the reliability of the video-text
experimental results.

• Our VL-PET framework focuses on challenging VL
downstream tasks, including some discriminative and
generative tasks (e.g., question-answering tasks and
captioning tasks). But there are many other down-
stream tasks in the real life, and we do not include all
types of tasks in the multi-task learning experiments.
Therefore, our designs and experimental results are not
always guaranteed to be generalized to other VL tasks
(e.g., image-text retrieval and video-text retrieval) and
other domains (e.g., NLP and CV).

• We validate the enhanced effect of employing our VL-
PET designs (e.g., granularity-controlled mechanism
and lightweight PET module designs) on existing PET
techniques (i.e., Compacter and VL-Adapter). But our
VL-PET designs may not be applicable to enhance all
PET techniques.

• PET techniques are proposed to reduce the number
of trainable parameters and save model storage space.
Our work utilizes multi-task learning to achieve further
reduction. However, similar to most PET techniques,
our work integrates newly-designed modules into large
PLM backbones, which still evoke a lot of memory and
time consumption during training and inference.

References
[1] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollár, and C. Lawrence Zitnick.
Microsoft COCO captions: Data collection and evaluation
server. CoRR, abs/1504.00325, 2015.

[2] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unify-
ing vision-and-language tasks via text generation. In ICML,
2021.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

[4] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answer-
ing. In CVPR, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[6] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[7] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
ICLR, 2022.

[8] Drew A Hudson and Christopher D Manning. Gqa: A new
dataset for real-world visual reasoning and compositional
question answering. In CVPR, 2019.

[9] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. In NeurIPS, 2021.

[10] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L. Berg.
Tvqa: Localized, compositional video question answering.
In EMNLP, 2018.

[11] Jie Lei, Licheng Yu, Tamara L. Berg, and Mohit Bansal. Tvr:
A large-scale dataset for video-subtitle moment retrieval. In
ECCV, 2020.

[12] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
2021.

[13] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. Bart: Denoising sequence-to-
sequence pre-training for natural language generation, trans-
lation, and comprehension. In ACL, 2020.

[14] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng
Yu, and Jingjing Liu. Hero: Hierarchical encoder
for video+language omni-representation pre-training. In
EMNLP, 2020.

[15] Linjie Li, Jie Lei, Zhe Gan, Licheng Yu, Yen-Chun Chen,
Rohit Pillai, Yu Cheng, Luowei Zhou, Xin Eric Wang,
William Yang Wang, et al. Value: A multi-task bench-
mark for video-and-language understanding evaluation. In
NeurIPS, 2021.

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2017.

[17] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa De-
hghani, and James Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. In
ACL, 2021.

[18] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. J. Mach. Learn. Res.,
21:140:1–140:67, 2020.

[20] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun
Bai, and Yoav Artzi. A corpus for reasoning about natural
language grounded in photographs. In ACL, 2019.

[21] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. LST: lad-
der side-tuning for parameter and memory efficient transfer
learning. CoRR, abs/2206.06522, 2022.

[22] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter:
Parameter-efficient transfer learning for vision-and-language
tasks. In CVPR, 2022.

[23] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit:
Simple parameter-efficient fine-tuning for transformer-based
masked language-models. In ACL, 2022.

[24] Luowei Zhou, Chenliang Xu, and Jason J. Corso. To-
wards automatic learning of procedures from web instruc-
tional videos. In AAAI, 2018.

