
360VOT: A New Benchmark Dataset for Omnidirectional Visual Object Tracking
- Supplementary -

Huajian Huang Yinzhe Xu Yingshu Chen Sai-Kit Yeung
The Hong Kong University of Science and Technology

{hhuangbg, yxuck, ychengw}@connect.ust.hk, saikit@ust.hk

Abstract

In this supplementary, we first demonstrate the proposed
360 tracking framework in detail. Then in Sec. 2, we
detail the data collection criteria and categorization. In
Sec. 3, we provide more information on annotation includ-
ing the segmentation toolkit and conversion algorithms from
masks to bounding boxes. Finally, we show more qualita-
tive and quantitative results, such as performance compar-
ison between tangent BFoV and our extended BFoV, track-
ing visual results on challenging sequences with exclusive
attributes, and more quantitative results among different
trackers on 360VOT. In addition, we have a supplementary
video1 to show some sequences with four representation
ground truths and display more omnidirectional video ob-
ject tracking results in challenging scenarios from 360VOT
benchmark dataset.

1. 360 Tracking Framework

We use a spherical camera model to depict the relation-
ship between the 3D camera space [X,Y, Z] and the 2D
image space [u, v]. The projection function F is formulated
as:

u = (
lon

2π
+ 0.5) ∗W = arctan(X/Z), (1)

v = (− lat

π
+ 0.5) ∗H = arctan(

−Y√
X2 + Z2

), (2)

where −π < lon < π and −π/2 < lat < π/2 denote the
longitude and latitude in the spherical coordinate system re-
spectively. W and H are the width and height of the 360◦

image. As we mention in the main paper, a (r)BFoV is de-
noted as [clon, clat, θ, ϕ, γ], where clon and clat represent
the object center in the spherical coordinate system, θ and
ϕ are the maximum bounding FoVs of the object, the rota-
tion γ of BFoV is zero. If we use a tangent plane T ∈ R3 to

1https://github.com/HuajianUP/360VOT/

model the represented region of (r)BFoV, the corresponding
region on 360◦ is formulated as:

I((r)BFoV |Ω) = F(Ry(clon) · Rx(clat) · Rz(γ) ·Ω). (3)

where,

Ry(clon) =

 cos(clon) 0 sin(clon)
0 1 0

−sin(clon) 0 cos(clon)

 , (4)

Rx(clat) =

1 0 0
0 cos(clat) −sin(clat)
0 sin(clat) cos(clat)

 , (5)

Rz(γ) =

cosγ −sinγ 0
sinγ cosγ 0
0 0 1

 , (6)

Ω = T =

XY
Z

 =

−tan(θ/2) : tan(θ/2)
−tan(ϕ/2) : tan(ϕ/2)

1

 , (7)

To handle a large FoV, we extend the represented region of
BFoV. When the FoV is larger than the threshold, e.g., 90◦,
the bounding region of BFoV becomes a surface segment
S ∈ R3 of the unit sphere:

S =

cos(Φ)sin(Θ)
−sin(Φ)

cos(Φ)cos(Θ)

 , (8)

where, Φ ∈ [−ϕ/2, ϕ/2],Θ ∈ [−θ/2, θ/2]. Therefore, the
corresponding region of extended (r)BFoV on 360◦ is for-
mulated as:

I((r)BFoV |Ω), Ω =

{
T (θ, ϕ), θ < 90◦, ϕ < 90◦

S(θ, ϕ), otherwise
.

(9)
Based on the I which actually records the corresponding
pixel coordinates of 360◦, we can remap the 360◦ image
and extract a local search region to perform tracking which
generates a BBox or rBBox prediction relative to the local
region. After that, we still take advantage of I , converting
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Benchmark Videos
Total

frames
Min

frames
Mean
frames

Median
frames

Max
frames

Object
classes Attr. Annotation Feature Year

ALOV300[13] 314 152K 19 483 276 5,975 64 14 sparse BBox diverse scenes 2013
OTB100[18] 100 81K 71 590 393 3,872 16 11 dense BBox short-term 2015

NUS-PRO[8] 365 135K 146 371 300 5,040 8 12 dense BBox occlusion-level 2015
TC128[10] 129 55K 71 429 365 3,872 27 11 dense BBox color enhanced 2015

UAV123[11] 123 113K 109 915 882 3,085 9 12 dense BBox UAV 2016
DTB70[9] 70 16K 68 225 202 699 29 11 dense BBox UAV 2016

NfS[6] 100 383K 169 3,830 2,448 20,665 17 9 dense BBox high FPS 2017
UAVDT[1] 100 78K 82 778 602 2,969 27 14 sparse BBox UAV 2017

TrackingNet∗[12] 511 226K 96 441 390 2,368 27 15 sparse BBox large scale 2018
OxUvA[16] 337 1.55M 900 4,260 2,628 37,440 22 6 sparse BBox long-term 2018
LaSOT∗[3] 280 685K 1,000 2,448 2,102 9,999 85 14 dense BBox category balance 2018

GOT-10k∗[5] 420 56K 29 127 100 920 84 6 dense BBox generic 2019
TOTB[4] 225 86K 126 381 389 500 15 12 dense BBox transparent 2021

TREK-150[2] 150 97K 161 649 484 4,640 34 17 dense BBox FPV 2021
VOT[7] 62 20K 41 321 242 1,500 37 9 dense BBox annual 2022

360VOT 120 113K 251 940 775 2,400 32 20
dense (r)BBox

& (r)BFoV 360◦ images 2023

Table 1: Comparison of current popular benchmarks for visual single object tracking in the literature. ∗ indicates that only
the test set of each dataset is reported.

360VOT

People 25

Skiing 5

Skydiver 4

Dancer 3

Rollerblader 2

Pedestrian 2

Skateboarder 2

Diver 2

Hackey player 2

Surfer 2

Kid 1

Object 50

Car 11

Boat 7

Building 6

Fly 6

Kart 5

F1-car 3

Drone 2

Lego 2

Basket 2

Cloud 1

Cup 1

Helmet 1

Moto 1

Shoes 1

Tire 1

Train 1

Animal 20

Kitty 4

Bird 2

Dog 2

Dolphin 2

Elephant 2

Panda 2

Monkey 1

Rabbit 1

Rhinocero 1

Shark 1

Squirrel 1

Turtle 1

Human & Carrier 25

People & Moto 10

People & Horse  6

People & Bike 5

Wing outfit 4

Figure 1: 360VOT contains 120 sequences in diverse sce-
narios and 32 object categories which are denoted in bold.

the local prediction to obtain a global bounding region. To
get the final (r)BBox prediction, we can calculate the min-
imum area (rotated) rectangle on the 360◦. In addition, we
can re-project the coordinates of the bounding region on the
360◦ image to the spherical coordinates system and calcu-
late the maximum bounding FoV for (r)BFoV.

2. Details of 360VOT Collection

We manually collected videos from YouTube and cap-
tured some using a 360-degree camera. Four features were
recorded for each sequence: camera motion (moving and
stationary), target classes (humans, animals, rigid objects
and non-rigid objects), duration (18 seconds to 75 min-
utes) and environment. Specifically, the envonment varies
among indoor-outdoor, illumination (daylight, white light
and night) and weather (cloudy, sunny and rainy). We
ranked and filtered videos considering four criteria of track-
ing difficulty scale and some additional challenging cases.
First, videos with the more adequate relative motion of the
target and camera rank higher. Targets are preferably in
a high degree of mobility, appearing in various locations
across the frames rather than stationary. Second, videos
with higher variability of the environment rank higher. The
video background is supposed to be ever-changing across
the video, such as with variations in lighting conditions.
Third, videos with the target crossing frame boundaries rank
higher. The object moving across frame boundaries is a dis-
tinct feature in panoramic videos. Finally, videos with a
sufficient duration rank higher. A sufficient length of video
provides a higher feasibility for the diversity of target move-
ments and deformations, and possible disappearances, in-
creasing tracking difficulties across the video.

Eventually, the 360VOT benchmark dataset contains 120
sequences with about 113K frames in total. The minimum
of frames is 251 while the average is 940. The types of tar-
gets can be placed in four major categories: People, Object,
Animal and Human & Carrier. In counting the class num-
ber of 360VOT, instead of subdividing the classes of hu-
mans, we describe it in a single broad category as People.
Since Horse and Bike classes in 360VOT always co-occur,



Figure 2: We take advantage of the click-based interactive
segmentation model [14] and develop a semi-automatic an-
notation tool to significantly increase the efficiency and at-
tain high-quality annotation. Annotators refine a segment
via green positive and red negative clicks.

we only classify them in Human & Carrier but not in Ob-
ject and Animal. Finally, we consider it most appropriate to
divide all targets into 32 categories, with the details of them
shown in Figure 1. The comparison with current popular
benchmarks is detailed on Table 1.

3. Annotation
Annotation is usually tedious and labor-intensive. For

some existing benchmarks, they mentioned that they hired
a large annotation team, more than 10 experts in the tracking
domain, to manually label an enormous number of BBoxes
over several months. However, such a strategy is not ap-
plicable for us to get 4 high-quality types of annotation. In
addition, even though we can hire so many annotators with
professional backgrounds, it is difficult to guarantee that the
subjective annotations are optimal as the ground truth. The
work [2] also reports the BBox annotation quality problem
in the popular tracking benchmarks [18]. To obtain unbi-
ased ground truth, we decide to segment the per-pixel target
instance in each frame and then compute the corresponding
(r)BBox and (r)BFoV from the resultant masks.

3.1. Segmentation toolkit

To efficiently obtain fine-grained segmentation, we uti-
lize a state-of-the-art tracker to get the initial positions of
the targets with human online revision. The initial positions
are then used by a semi-automatic segmentation toolkit to
initialize the target object segmentation. The toolkit is
based on a click-based interactive segmentation framework
[14]. The framework utilizes the HRNet-32 [15, 17] IT-M
model trained on the COCO+LVIS dataset which can gen-
erate a complete segmentation on the instance with a few
clicks. If the initial segmentation does not cover the target
completely or contains elements not belonging to the target,

Algorithm 1 Mask to (r)BBox
Input: The mask M and boolean value needRotation

/*Step 1*/
if M is empty then

return None
wM ← the width of the mask
Convert Bound M to set of polygons.
Estimate the largest segment and calculate the centroid [x1, y1] in terms
of the spherical coordinates, θ1, ϕ1

∆x← x1 − wM/2
/*Step 2*/
Rotate M byRy(θ1) ∼ Eq. 4, giving MR1

/*Step 3*/
if needRotation then

Bound MR1 by the minimum area rotated rectangle
[cx, cy, w, h, γ]
else

Bound MR1
by the minimum area rectangle [cx, cy, w, h]

γ ← 0

if w < wM − 1 then
cx← cx+∆x

else
cx← w/2

return (cx, cy, w, h, γ)

positive (green) or negative (red) guiding points are manu-
ally added to generate a more accurate refined segmentation
as shown in Figure 2.

3.2. Mask to (r)BBox and (r)BFoV

Essentially, the optimal annotation is to minimize the
bounding area of the target. We can convert the mask to
generate 4 types of unbiased ground truths. Specifically,
since the masked target may span the left and right bor-
ders of the image, we first estimate the largest segment and
then rotate the mask based on the centroid c1 of the largest
segment. To estimate BBox and rBBox, we only need to
move the c1 to the horizontal center of the mask image via
Eq. 4 and then calculate the minimum area rectangle and
rotate the rectangle respectively. However, for estimating
the (r)BFoV, we need to rotate the mask centroid to the im-
age center via Eq. 4 and 5 twice in order to reduce the
distortion as much as possible. It is necessary to guarantee
the accuracy of the estimations, especially for a large FoV.
Next, we can calculate the bounding FoV to get the BFoV.
But in terms of rBFoV estimation, we utilize the rotating
calipers algorithm to estimate the rotation and then further
rotate the mask via Eq. 6 before calculating the bounding
FoV. These processes are described in Algo. 1 and 2, and
also illustrated in Figure 3.

4. More Results
Tangent BFoV vs extended BFoV. As the FoV increases,
the regions extracted by the tangent BFoV suffer extreme
distortion, which would impact the tracking performance.
To further verify the effectiveness of extended BFoV, we



Figure 3: The 4 different annotations are generated by minimizing the bounding region of the object according to the seg-
mentation.

Algorithm 2 Mask to (r)BFoV
Input: The mask M and boolean value needRotation

/*Step 1*/
if M is empty then

return None
Convert Bound M to set of polygons.
Estimate the largest segment and calculate the centroid in terms of the
spherical coordinates, θ1, ϕ1

/*Step 2*/
Rotate M by R1 = Ry(θ1)Rx(ϕ1) ∼ Eq. 4 and 5, giving MR1

Calculate and convert the centroid of MR1
to the original M in terms

of the spherical coordinates, θ2, ϕ2

/*Step 2.1*/
Rotate M by R2 = Ry(θ2)Rx(ϕ2), giving MR2

Calculate the centroid cR2
, bounding width wR2

, height hR2
, and

rotation γR2
of MR2

by rotating calipers algorithm
Convert cR2

to the original M and get the centroid in terms of the spher-
ical coordinates, θ3, ϕ3

if needRotation then
if wR2

> hR2
then

γ ← γR2

else
γ ← γR2

− 90

else
γ ← 0

/*Step 3*/
Rotate M by R3 = Ry(θ3)Rx(ϕ3)Rz(γ) ∼ Eq. 4- 6, giving MR3

Calculate the range of longitude [lonmin, lonmax] and latitude
[latmin, latmax] of MR3

Convert longitude center (lonmax+lonmin)/2 of MR3
to orginal M ,

giving clon
Convert latitude center (latmax + latmin)/2 of MR3

to orginal M ,
giving clat
θ ← lonmax − lonmin

ϕ← latmax − latmin

return (clon, clat, θ, ϕ, γ)

conducted extra experiments, tracking based on the un-
warped image of tangent BFoV. As reported in the main
paper, the new baseline AiATrack-360 achieves 0.534 Sdual

on 360VOT BBox. However, if we conduct a search based
on tangent BFoV, it encounters obvious degradation and
only achieves 0.449 Sdual.
More challenging qualitative results We supplement qual-
itative results on the sequences with different exclusive at-
tributes of omnidirectional visual tracking in Figure 4 - 10.
In the supplementary video, we also compare different rep-
resentation ground truths and show video object tracking
results in challenging scenarios which demonstrate there is
big room for improvement.
More quantitative results. The success and precision plots
of different trackers on 360VOT are shown in Figure 11.
The complete performance results based on BBox for re-
maining attributes are demonstrated in Figure 12 - 15.
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Figure 4: People. The qualitative comparison and the IOU plot of 8 top trackers on the scene with stitching artifacts (SA).
The target is the rider in blue and green checkered clothes.

Figure 5: Cup. The qualitative comparison and the IoU plot of 8 top trackers on the scene where the target may cross border
(CB). The target is the cup-shaped carrier.

Figure 6: Skydiver. The qualitative comparison and the IoU plot of 8 top trackers on the scene where the target fast moves on
the sphere (FMS). The target is the skydiver in a black and white suit.



Figure 7: Diver. The qualitative comparison and the IoU plot of 8 top trackers on the scene where the target is of large
field-of-view (LFoV). The target is the female diver in a gray diving suit.

Figure 8: Building. The qualitative comparison and the IoU plot of 8 top trackers on the scene with latitude variation (LV).
The target is the house with a red roof and white walls.

Figure 9: Train. The qualitative comparison and the IoU plot of 8 top trackers on the scene where the target is on a high
latitude (HL). Best viewed in color and zoom-in. The target is the first carriage of the train.



Figure 10: Kitty. The qualitative comparison and the IoU plot of 8 top trackers on the scene where the target has large
distortion (LD). The target is the grey kitten.

Figure 11: The success and precision plots of different trackers on 360VOT in terms of BBox predictions.



Figure 12: The performance of trackers on each attribute using the BBox dual success metric.



Figure 13: The performance of trackers on each attribute using the BBox dual precision metric.



Figure 14: The performance of trackers on each attribute using the BBox normalized dual precision metric.



Figure 15: The performance of trackers on each attribute using the BBox angle precision metric.


