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1. Details of Loss Function

liintra(·) and licross(·) are InfoNCE-based loss. They are
formulated as follows,
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Here, e(a, b) = exp(a · bT /τ). We set the temperature co-
efficient τ = 0.7.

2. Complexity Analysis

Based on the experiments on fully-supervised classifica-
tion, we further report the computation costs for evaluation
and the parameter sizes for training in Tab. 1 to analyze the
complexity of compared models.

Since PointCLIP achieves its best accuracy when us-
ing ResNet50x16, its computation cost is higher than our
CLIP2Point with ViT-B/32. While the computation cost of
P2P is even higher, its cost needs to be multiplied by 40
(the number of views) as P2P infers a single view at one
time. Our CLIP2Point achieves a higher accuracy than P2P
(HorNet-L) with a much lower computation cost.
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On the other hand, embedded with GDPA module,
CLIP2Point contains fewer training parameters than those
full-tuning methods. Only by tuning lightweight adapters,
CLIP2Point can outperform the state-of-the-art pre-training
method Point-MAE.

Note that, the low computation cost of Transformer is
because the grouping and gathering mechanisms for point
cloud are not included in the calculation of MACs. Thus,
comparing the MACs values with 3D networks is not fair.

Table 1. The computation costs for evaluation and the parameter
sizes for training, based on fully-supervised classification.

Methods Eval. MACs(G) Tr. Param.(M)
MVCNN 43.72 11.20
SimpleView 53.38 12.76
MVTN 45.97 27.06
PointCLIP 227.42 5.51
P2P: ResNet-101 11.96(×40) 0.25
P2P: ConvNeXt-L 38.51(×40) 0.14
P2P: HorNet-L 38.72(×40) 1.01
Transformer 2.40 22.10
+ Point-BERT 2.40 22.10
+ Point-MAE 2.40 22.10
CLIP2Point (Ours) 88.23 5.78

3. Application on Scene-Level Tasks

Analogous to CLIP, we design our pre-training pipeline
in an instance-level paradigm. We note that the knowledge
in CLIP is more suitable to be used in image classification
and retrieval, and it is also hard to directly leverage fine-
grained knowledge from CLIP. Thus, existing works [2, 1]
usually adopt extra modules to provide possible proposals,
and CLIP still works as a classifier. Following [1], we con-
duct open-vocabulary 3D detection experiments, using our
CLIP2Point to classify the bounding box generated by 3D
detectors. In Tab. 2, CLIP2Point outperforms two 3D detec-



Table 2. Open-Vocabulary 3D Detection on ScanNet.
Method Training Data mAP25

VoteNet Seen(Train)-Unseen(Test) 0.04
3DETR 1.11

Image2Point
Zero-Shot

0.84
PointCLIP 3.09
CLIP2Point 3.71
OV-3DETIC 2D&3D Detection Data 12.65

tion networks and two cross-modal methods based on pre-
training, indicating that CLIP2Point can adapt to open-
world scene-level tasks. In contrast to OV-3DETIC specif-
ically trained on 3D detection datasets with the distillation
of a 2D detector, our mAP is relatively low, owing to noised
point cloud data in proposed bounding boxes. Nonetheless,
the result verifies the feasibility of such knowledge transfer
in scene-level tasks. In the conclusion of the main text, we
also mention that real-world training data can further en-
hance tasks related to real scenes in future work. Due to
that CLIP2Point is effective in classifying objects, it can be
naturally applied to scene-level tasks with proper proposals.

4. Why Not Applying CLIP to 3D Networks?
Since 3D backbones can be applied to downstream tasks

more easily, a natural idea is whether CLIP pre-training
knowledge can be directly applied to 3D networks. In fact,
previous works [3, 6] have already demonstrated the effec-
tiveness of such 2D-3D transfer. However, these methods
achieve a sound result only after well fine-tuning on specific
downstream datasets (e.g., DGCNN pre-trained by Cross-
Point even cannot surpass PointCLIP in the few-shot ex-
periment in our main text), which means they can hardly
adapt to 3D tasks with 2D knowledge alone. We replace
the depth encoder in CLIP2Point with a 3D encoder Point
Transformer [7], while getting a 20.83% accuracy in Mod-
elNet40 zero-shot classification after pre-training. We sum-
marize two reasons for the bad result: 1) Features extracted
by 2D and 3D encoders have different granularities: 2D en-
coders extract single-view features, while 3D encoders can
aggregate a complete 3D object; 2) The gap between the
parameter sizes of 2D and 3D encoders is large (e.g., ViT-
B/32 in CLIP contains 87.85M parameters, but DGCNN
only contains 0.98M parameters): 2D pre-training knowl-
edge cannot completely transfer to small 3D encoders.

Nonetheless, it is still promising future work to directly
transfer CLIP knowledge to 3D networks.

5. Rendering Details
Following MVTN [4], we render 3D models to RGB im-

ages with Pytorch3D [5]. We first load mesh objects with
texture information from ShapeNetCore v2. We choose 10
views in a spherical configuration, and then use MeshRas-

terizer and HardPhongShader in Pytorch3D.render, with
the colors of backgrounds and lights both white. For zero-
shot evaluation, we use 6 orthogonal views: front, back,
left, right, top, and bottom. We add four corner views for
pre-training and downstream learning. The view distance
is initialized as 1, and the random range of distance in pre-
training is [0.9, 1.1). We visualize ten views of an airplane
in Fig. 1.

6. Dataset Visualization
We provide more visualization results in Fig. 2, 3, 4. For

each category in ShapeNet, we have a rendered RGB image
and a corresponding depth map.
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Figure 1. Visualization of multi-view RGB images for an airplane.
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Figure 2. Rendered RGB images of Category 1 ∼ Category 20 on ShapeNet.
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Figure 3. Rendered RGB images of Category 21 ∼ Category 40 on ShapeNet.
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Figure 4. Rendered RGB images of Category 41 ∼ Category 55 on ShapeNet.


