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Overview. In the supplementary material, we elaborate
on the details of metrics and experimental settings. Specif-
ically, we demonstrate the detailed definitions of AUC,
ACC, Masked ACC, BWT, and Forgetting. Then, we pro-
vide more experimental details about comparison with other
WSI analysis approaches and comparison with other contin-
ual learning approaches.

1. More Information about Metrics
In this section, we provide more details about the metrics

we used in our experiments.

AUC. The Area Under the receiver operating characteristic
Curve (AUC) is an important metric to evaluate the perfor-
mance of medical image analysis and WSI analysis models.
In our WSI continual learning setting, we evaluate the per-
formance after the final task conducted. Specifically, we
compute the AUC of each class against the rest [13, 7], with
OvR (i.e., One vs Rest) strategy.

ACC. The Accuracy (ACC) metric we used in this project
is traditional multi-class ACC metric, and we also evaluate
ACC after the final task is conducted.

Masked ACC. The above AUC and ACC metrics only eval-
uate the classification performance around all classes, and
cannot measure the performance in single task. Therefore,
we also applied Masked ACC as a evaluation metric in our
work. The Masked ACC is calculated by masking task-
irrelevant categories from different datasets, which can also
reflect the performance of continual learning on the task-
incremental scenario.

BWT. Backward transfer (BWT) is the influence of learning
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a new task t has on a previous task k (k < t) [11]. After the
model finishes learning about the task t, we evaluate its test
performance on all T tasks, and we can construct the matrix
R ∈ RT×T , where Ri,j is the test classification accuracy of
the model on task j after observing the last sample from
task i. The BWT can be calculated from the constructed
R ∈ RT×T as:

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i (1)

Forgetting. Forgetting measures how much an algorithm
forgets what is learned in the past [3]. And it is defined
as the difference between the maximum knowledge gained
about the task throughout the learning process in the past
and the knowledge the model currently has about it:

Forgetting =
1

T − 1

T−1∑
i=1

max
t∈{1,·,T−1}

Rt,i −RT−1,i (2)

Larger AUC, ACC, Masked ACC, and BWT, and lower
Forgetting indicate better performance of the model.

2. Additional Experimental Details
In this section, we demonstrate more detailed settings in

our experiments.

Details of Comparison with Other WSI Analysis Ap-
proaches. As introduced in the paper, we first evaluate the
performance of the proposed HIT model by comparing with
other start-of-the-art WSI analysis models. We set up four
tasks/datasets for this project, and each task/dataset contains
two classes. We merge these four datasets and conduct a
eight-class classification task in this comparison scenario.
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CL Type Method Buffer size Avg. AUC (↑) Avg. ACC (↑) Avg. Masked ACC (↑)

Baselines
JointTrain (Upper)

- - - -
Finetune (Lower) 0.786 ± 0.011 0.485 ± 0.018 0.824 ± 0.020

Regularization
based

LwF [10] - 0.801 ± 0.019 0.461 ± 0.009 0.836 ± 0.017
EWC [9] 0.802 ± 0.012 0.480 ± 0.013 0.809 ± 0.017

Rehearsal
based

GDumb [12]

5 WSIs

- - -
ER-ACE [2] 0.843 ± 0.019 0.523 ± 0.032 0.805 ± 0.023
A-GEM [4] 0.850 ± 0.025 0.529 ± 0.034 0.810 ± 0.040
DER++ [1] 0.852 ± 0.027 0.540 ± 0.041 0.814 ± 0.028
ConSlide w/o BuRo 0.883 ± 0.009 0.569 ± 0.020 0.864 ± 0.017

ConSlide 1100 regions
(≈ 5 WSIs) 0.926 ± 0.019 0.677 ± 0.026 0.865 ± 0.026

GDumb [12]

10 WSIs

- - -
ER-ACE [2] 0.866 ± 0.009 0.581 ± 0.029 0.817 ± 0.026
A-GEM [4] 0.879 ± 0.012 0.562 ± 0.028 0.853 ± 0.011
DER++ [1] 0.874 ± 0.012 0.606 ± 0.033 0.856 ± 0.021
ConSlide w/o BuRo 0.901 ± 0.009 0.626 ± 0.019 0.861 ± 0.019

ConSlide 2200 regions
(≈ 10 WSIs) 0.938 ± 0.010 0.711 ± 0.023 0.867 ± 0.015

GDumb [12]

30 WSIs

- - -
ER-ACE [2] 0.910 ± 0.007 0.686 ± 0.024 0.832 ± 0.017
A-GEM [4] 0.913 ± 0.009 0.616 ± 0.056 0.863 ± 0.019
DER++ [1] 0.922 ± 0.017 0.715 ± 0.029 0.873 ± 0.022
ConSlide w/o BuRo 0.942 ± 0.007 0.732 ± 0.030 0.878 ± 0.019

ConSlide 6600 regions
(≈ 30 WSIs) 0.942 ± 0.011 0.729 ± 0.018 0.871 ± 0.014

Table 1. Comparison of average results among different continual learning methods. The best performances are shown in bold.

Besides, the original HIPT model [5] are conducted under
the minimal patch size set as 16×16, and it has a three-layer
hierarchical structure. To make a fair comparison with pro-
posed HIT, we re-implement HIPT with the minimal patch
size of 512× 512 (extracted features with pre-trained CNN
feature extractor) and with a two-layer hierarchical structure
(i.e., patch- and region-level respectively) similar to HIT.

Details of Comparison with Other Continual Learning
Approaches. In the paper, we compare our proposed Con-
Slide with several state-of-the-art continual learning ap-
proaches. However, previous continual learning methods
are conducted on natural images by using CNN encoder
(e.g., ResNet [8]), and directly applying them on WSI data
is not feasible. Therefore, we reproduce several powerful
baselines with the proposed HIT as backbone to realize a
fair comparison. Besides, for the rehearsal-based methods,
we save the patch- and region-level features to the buffer re-
spectively, for the ease of WSI replay. The reproduced ap-
proaches include: regularization-based methods LwF [10]
and EWC [9], and rehearsal-based methods GDumb [12],
ER-ACE [2], A-GEM [4], and DER++ [1].

3. Additional Experimental Results

In the paper, we report the comparison results with other
continual learning approaches in Table 5, and the results are
calculated on all datasets after the final task is conducted
(i.e., evaluate eight-class classification performance). We

notice that in some works [6, 14, 15], the average results
of models at different time steps are also reported (i.e.,
evaluate the performances of two-, four-, six-, and eight-
class classification tasks respectively and calculate the mean
value of them). So we also follow these works and report
the average results in Table 1.

As the JointTrain and GDumb are conducted once in the
whole process, we only report the last results in the pa-
per and there are no averaged results. It is observed that
the regularization-based methods still perform worse than
rehearsal-based methods, and only have a little improve-
ment over the lower-bound baseline in average AUC metric.
Compared with DER++ under different buffer size, the pro-
posed ConSlide w/o BuRo can consistently achieve 3.0%,
2.7%, and 2.0% improvements in Avg. AUC, 2.9%, 2.0%,
and 1.7% improvements in Avg. ACC, and 5.0%, 0.5%,
and 0.5% improvements in Avg. Masked ACC. By incor-
porating the BuRo module, ConSlide can further boost the
average performance, especially under small buffer sizes.
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