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1. More Experimental Results
1.1. Quantitative Evaluation

We evaluate our method with more methods including MCNN [19], CSR-Net [5], SA-Net [1], and NoisyCC [14] on the
ShanghaiTech [20], UCF-QNRF [4], JHU-Crowd++ [13], and NWPU-CROWD [17] datasets. The results are demonstrated
in Table 1. The proposed AWCC-Net can achieve the best performance in UCF-QNRF and JHU-Crowd++ while conducting
comparable performance in the ShanghaiTechA and NWPU-CROWD datasets. Moreover, we present the density maps under
different adverse weather and clear scene predicted by the AWCC-Net and other algorithms in Figure 1. The results show
that the AWCC-Net can predict the more accurate density distribution and counts of crowds under bad weather and clear
scenes.

2. Implementation Details
In Table 1 of the regular paper, we compare our methods with several baselines. The results of ’BL-U’, ’BL-UF’, ’GL’,

’GL-U’ and ’GL-UF’ are retrained based on their original setting and official implementation since they do not provide pre-
trained weights on the JHU-Crowd++ dataset. The results of other methods are directly reported from their original papers
or the paper of the JHU-Crowd++ dataset [13].

* indicates equal contribution.

https://awccnet.github.io/


Dataset ShanghaiTechA UCF-QNRF JHU-Crowd++ NWPU-CROWD
Method MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [19] 110.2 173.2 277.0 426.0 188.9 483.4 232.5 714.6
CSRNet [5] 68.2 115.0 - - 85.9 309.2 121.3 387.8
SANet [1] 67.0 104.5 - - 91.1 320.4 190.6 491.4
SFCN [18] 64.8 107.5 102.0 171.4 77.5 297.6 105.7 424.1

BL [9] 62.8 101.8 88.7 154.8 75.0 299.9 105.4 454.2
LSCCNN [11] 66.5 101.8 120.5 218.2 112.7 454.4 - -

CG-DRCN-VGG16 [13] 64.0 98.4 112.2 176.3 82.3 328.0 - -
CG-DRCN-Res101 [13] 60.2 94.0 95.5 164.3 71.0 278.6 - -

DM-Count [16] 59.7 95.7 85.6 148.3 - - 88.4 388.6
NoisyCC [14] 61.9 99.6 85.8 150.6 - - 96.9 534.2

UOT [10] 58.1 95.9 83.3 142.3 60.5 252.7 87.8 387.5
S3 [7] 57.0 96.0 80.6 139.8 59.4 244.0 83.5 346.9

GL [15] 61.3 95.4 84.3 147.5 59.9 259.5 79.3 346.1
ChfL [12] 57.5 94.3 80.3 137.6 57.0 235.7 76.8 343.0
CLTR [6] 56.9 95.2 85.8 141.3 59.5 240.6 74.3 333.8
MAN [8] 56.8 90.3 77.3 131.5 53.4 209.9 76.5 323.0

GauNet [3] 54.8 89.1 81.6 153.7 58.2 245.1 - -
AWCC-Net 56.2 91.3 76.4 130.5 52.3 207.2 74.4 329.1

Table 1. Quantitative comparison on the ShanghaiTech A [20], UCF-QNRF [4], JHU-Crowd++ [13], and NWPU-CROWD [17]
datasets with existing methods.
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Figure 1. Comparison of density maps of the proposed method and other methods in the adverse weather (i.e., haze, snow, rain)
and clear scene. The proposed method can compute more accurate density maps compared to the results estimated by other strategies.
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