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A. Asset Acknowledgement
We introduced the dataset in the main text. The used

code assets are shown in Tab. 1.

B. Network Architecture
We briefly introduced the network architecture in the

Sec. 3.1 of the main text. More design details along with
necessary math notations are presented in this section.
Modality Branch. For image branch, the image features
extracted from the Swin-T [13] will be transformed to BEV
(bird-eye’s-view) representation via LSS [15], where each
pixel has a discrete depth distribution. The depth is dis-
cretized into [1, 60] meters with a step size of 1 meter. For
LiDAR branch, the point cloud features coming out from
the VoxelNet [27] will be compressed to 1 along the the
z-axis, forming the BEV representation. The image BEV
presentations f img and LiDAR BEV presentations f lid are
concatenated and then fed into the fusion block, resulting in
the the fusion feature ffuse. The fusion block is a FPN with
two down-sample and two up-sample conv blocks, which is
implemented as same as BEVFusion [14].
Detection Head. As shown in Fig. 1, both detection head
and segmentation head are query-based. Given the fused
BEV feature ffuse, the detection head will initial queries
by an auxiliary heatmap module, and sort out the top-N
candidates as the object queries:

Qd = top-n(heatmap(ffuse)) ∈ RN×Cd

, (1)

where Cd = 128 is the feature dimension and N = 200
is the number of queries, which is a little more than the
ground truth. The heatmap module is borrowed from Trans-
fusion [1], which screens out the local maxima from the

*Equal contribution.
†Corresponding author.

heatmap to prevent the object queries from scattering spa-
tially too closely. Then, a one-layer transformer decoder
is used to update the Qd, where ffuse is served as key and
value, and Qd itself is served as query, respectively. Finally,
a simple feed-forward network predict the boundary boxes
B using the updated query:

Qd
′

= transDec(Qd, ffuse),

B = ffn(Qd
′

).
(2)

For the loss functions, we employ the smoothed l1 loss and
standard focal loss as the regression loss and classification
loss, respectively. The weights of regression loss, classifi-
cation loss, and heatmap loss are 0.25, 1.0, and 1.0.
Segmentation Head. To generate the segmentation queries,
the semantic classes L is first converted to one-hot vectors,
and then projected by a linear layer:

Qs = projector(one-hot(L)) ∈ RM×Cs

, (3)

where M = 6 is the number of semantic categories and
Cs = 256 is the embedding dimension. To align with the
output shape, the fused BEV feature ffuse will be trans-
formed to the segmentation features ffuse

′

by an interpola-
tion layer and a 1D conv layer:

ffuse
′

= 1d-conv(intpl(ffuse)) ∈ RH×W×Cs

,
(4)

where H,W = 200 is the spatial size. Similarly, a one-
layer transformer decoder is employed to update the Qs

with the input ffuse
′

and Qs itself. The updated queries
is processed by the MLP to generate mask embeddings K:

Qs
′
= transDec(Qs, ffuse

′

),

K = mlp(Qs
′
) ∈ RM×C .

(5)



Table 1. Acknowledgement for used code assets in this work.

URL Version Licence
https://github.com/open-mmlab/OpenPCDet a9c66fe Apache-2.0
https://github.com/AvivNavon/nash-mtl 6467e30 NA
https://github.com/mit-han-lab/bevfusion 0e5b9ed Apache-2.0
https://github.com/ADLab-AutoDrive/BEVFusion be0cb2e Apache-2.0
https://github.com/facebookresearch/MaskFormer da3e60d MIT license

Table 2. Comparison to more methods.
Modality VoxelSize LiDAR Image mAP(%)↑ NDS↑ mIoU(%)↑

3D Detection

M2BEV [20] C - - ResNeXt-101 [21] 41.7 47.0 -
BEVFormer [9] C - - ResNet101 [6] 41.6 51.7 -
PointPillars‡ [8] L 0.075 PointPillars - 52.3 61.3 -
CenterPoint [23] L 0.075 VoxelNet - 59.6 66.8 -
PointPainting‡ [19] C+L 0.075 PointPillars - 65.8 69.6 -
MVP‡ [24] C+L 0.075 VoxelNet DLA-34 66.1 70.0 -
FusionPainting [22] C+L - Cylinder3D [26] HTCNet [2] 66.5 70.7 -
AutoAlign [5] C+L 0.075 CenterPoint ResNet-50 66.6 71.1 -
FUTR3D [3] C+L 0.075 VoxelNet ResNet-101 64.5 68.3 -
TransFusion [1] C+L 0.075 VoxelNet DLA-34 67.5 71.3 -
BEVFusion [14] C+L 0.075 VoxelNet Swin-T 68.5 71.4 -
Fuller-det C+L 0.075 VoxelNet Swin-T 67.6 71.3 -
Fuller-det (upper bound) C+L 0.1 VoxelNet Swin-T 62.1 66.6 -

BEV Map Segmentation

OFT‡ [16] C - - ResNet-18 - - 42.1
LSS‡ [15] C - - EfficientNet-B0 [17] - - 44.4
PointPillars‡ [8] L 0.1 - PointPillars - - 43.8
CenterPoint‡ [23] L 0.1 VoxelNet - - - 48.6
PointPainting‡ [19] C+L 0.1 PointPillars - - - 49.1
MVP‡ [24] C+L 0.1 VoxelNet DLA-34[25] - - 49.0
BEVFusion [14] C+L 0.1 VoxelNet Swin-T - - 62.7
Fuller-seg(upper bound) C+L 0.1 VoxelNet Swin-T - - 62.3

3D Detection + BEV Map Segmentation

BEVFusion† [14] (share) C+L 0.1 VoxelNet Swin-T - 69.7 54.0
BEVFusion† [14] (sep) C+L 0.1 VoxelNet Swin-T - 69.9 58.4
Baseline(share) C+L 0.1 VoxelNet Swin-T 59.1 65.0 44.0
Fuller(share) C+L 0.1 VoxelNet Swin-T 60.5 65.3 58.4

Finally, mask prediction S is obtained via a dot product be-
tween K and ffuse′ , followed by a sigmoid activation.

S = sigmoid(<ffuse
′

,K>) ∈ RM×H×W . (6)

Here <·, ·> is the dot-product operator. The loss function
for segmentation head is the standard focal loss [10] with
mean reduction.
Data Pre-processing. Following BEVFusion [14], the im-
age resolution is downsampled from 900 × 1600 to 256 ×
704. The perception range of point cloud is truncated
to [−51.2m, 51.2m] for X and Y axes, and [−5m, 3m]
for Z axis, which is further voxelized with the size of
(0.1m, 0.1m, 0.2m). The maximum numbers of non-empty
voxels for both training and inference are set to 60,000. For
point cloud augmentation, we apply randomly global rota-
tion between [−π/8, π/8], global scaling with a random

factor from [0.95, 1.05], and randomly global translation
along X and Y axis within 0.2m. For image augmentation,
we adopt random scaling with the factor [0.94, 1.11], ran-
dom rotation between [−5.4◦, 5.4◦], and random flip along
H and W .

Backbone Training. The LiDAR backbone (Voxel-
Net [27]) is initialized with the pretrained weight from
Transfusion-L [1] while the image backbone (Swin-T [13])
is pretrained on ImageNet [7]. Without branch frozen or
trained in advance, the whole network is trained in a end-to-
end fashion. The reported performance is validated without
test-time augmentation.

https://github.com/open-mmlab/OpenPCDet
https://github.com/AvivNavon/nash-mtl
https://github.com/mit-han-lab/bevfusion
https://github.com/ADLab-AutoDrive/BEVFusion
https://github.com/facebookresearch/MaskFormer
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Figure 1. Illustration of the task head.

C. More Experimental Results
C.1. Comparison to Benchmark

We compared the Fuller with existing literature in the
Tab. 1 of the main text. We compare it with more meth-
ods in Tab. 2. The table contains single-modality, multi-
modality, single-task, and multi-task methods.

C.2. Optimization of Multi-task Learning

Regarding multi-task optimization, we evaluate several
classic methods [12, 4, 11], as shown in Tab. 5. With
distinct natures, they improve the model differently. Note
that DWA [12] needs to empirically select the initial loss
weights, i.e., det:seg=1:10 in our example, while Grad-
Norm [4] needs extra learnable parameters. Considering
the scalability, we resort IMTL G [11] as the technique
for inter-gradient calibration, which demonstrates signifi-
cant improvement in map segmentation and the comparable
∆MTL with GradNorm.

C.3. Improvement upon MTL Baseline

Regarding the evaluation metric of multi-task learning,
we presented the metric ∆MTL in the main text based
on [18], which is intuitively understood as the average per-
formance drop compared to the single-task upper bound.
Here we introduce another metric that measures the perfor-
mance improvement compared to the multi-task baseline:

Table 3. In addition to the average performance drop ∆MTL com-
pared to upper bounds, we also list Fuller’s average performance
improvement ΛMTL compared to the multi-task baseline. Here we
list three loss weights ratios between detection task and segmenta-
tion task.
Method weight ratio mAP(%)↑ NDS(%)↑ mIoU(%)↑∆MTL(%)↓ ΛMTL(%)↑
Upper bounds - 62.1 66.6 62.3 - -

Baseline
1:1

59.1 65.0 44.0 18.3 -
Fuller 60.5 65.3 58.4 5.4 5.4

Baseline
1:5

59.8 65.5 55.7 8.0 -
Fuller 60.1 65.6 58.2 5.7 1.0

Baseline
1:10

59.3 65.0 57.9 14.0 -
Fuller 59.9 65.2 59.2 5.3 0.7

Table 4. Experiments with different image backbones.

Image LiDAR
mAP(%)↑ NDS(%)↑ mIoU(%)↑

Backbone Pretrain

Baseline
EfficientNet-B0 TransFusion-L

60.3 66.0 43.8
Fuller 60.1 66.0 51.6
Baseline

ResNet-50 TransFusion-L
58.8 65.3 43.7

Fuller 59.1 65.6 51.5

Table 5. DWA needs to empirically select the initial loss weights
while GradNorm uses extra learnable parameters. Considering
scalability and performance, we select the IMTL G as the inter-
gradient calibration.
Method mAP(%)↑ NDS↑ mIoU(%)↑ ∆MTL(%) ↓

Baseline 59.1 65.0 44.0 18.3
GradNorm [4] 58.3 64.4 57.2 8.8
DWA [12] 59.3 65.1 57.7 7.1
IMTL G [11] 57.1 63.3 59.4 8.9

Fuller (Ours) 60.5 65.3 58.4 5.4

ΛMTL =
1

T

T∑
i=1

(Mm,i −Nn,i), (7)

where T is the task number, Mb,i and Nn,i are the perfor-
mance of i-th task of the evaluated method and the multi-
task baseline, respectively. Specifically, we evaluate Fuller
under three settings of loss weights. The result is shown
in Tab. 3. As the loss weight of segmentation task is in-
creased, the performance gap between the baseline and the
upper bounds is narrowed, i.e., lower ∆MTL. Regardless
the settings of loss weights, Fuller proves to be able to im-
prove the baseline, as indicated by the ΛMTL metric.

C.4. Ablation Study of Image Backbone

For the experiments of the main text, we empirically find
that the pretrained weights of Transfuion L [1] is favorable
for LiDAR branch and Swin Transformer [13] is a strong
backbone for image feature extraction. We report more ab-
lation studies using different image backbones, as shown
in Tab. 4. Generally, EfficientNet-B0 [17] is more advanta-
geous than ResNet50 [6] for 3D detection. When compared
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Figure 2. Evaluated task performances in absence of LiDAR scans.
Table 6. Comparison between task heads.

Method mAP(%)↑ NDS↑ mIoU(%)↑ Params↓

CenterPoint[23] 58.6 64.8 - 1.6m
Fuller-det (Ours) 62.1 66.6 - 1.0m
BEVFusion[14] - - 62.7 4.7m
Fuller-seg (Ours) - - 62.3 2.7m

to the baseline, Fuller performs either superiorly or compa-
rably in terms of 3D detection. Notably, Fuller surpasses the
baseline by a large margin in the case of map segmentation.

C.5. Analysis of Modality Bias

In the main text, we conducted the experiment to in-
spect the modality bias, in which a model trained with both
modalities is evaluated by dropping off the image input. We
observed that in the absence of image input, 3D detection
can be supported by LiDAR scan without losing too much
performance. In contrast, the performance of segmentation
task drops drastically without image input. Here we show
another experiment that evaluates the trained model without
LiDAR scan. As shown in Fig. 2, 3D detection suffers ex-
tremely that it does not even work properly while map seg-
mentation has a relatively normal result. This phenomenon
reveals the issue of modality bias that LiDAR dominates
the detection performance and camera may work as an aux-
iliary modality for refinement. Additionally, our proposed
gradient calibration significantly improve the performance
of segmentation task. Improving detection performance in
such difficult situation is deferred to furture work.

C.6. Comparison between task heads.

To demonstrate the introduced task heads, we compare
the accuracy and parameter amount with widely-used de-
tection and segmentation heads in Tab. 6. For 3D detection,
Fuller-det surpasses CenterPoint[23] while saving 37.5%
parameters. Similarly, for map segmentation, Fuller-seg
achieves comparable result to BEVFusion[14] with 42.6%
parameters reduction.

D. Limitation.
Currently, our analysis focuses on the concatenation fu-

sion strategy. To generalize our model, we would like to in-

vestigate more fusion schemes in future. Besides, as shown
in Fig. 2, Fuller still can be improved to deal with the situa-
tion of sensor failure in real-world scenarios.
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