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A. Experiment Details

A.1. Prediction­oriented Model

Model inputs. In each scene, one of the two interacting

agents is designated as the focal agent, with its current state

serving as the origin of the coordinate system. We consider

10 surrounding agents closest to a target agent as the back-

ground agents, and therefore, there are two target agents to

predict and up to 20 different background agents in a scene.

The current and historical states of each agent are retrieved

for the last one second at a sampling rate of 10Hz, result-

ing in a tensor with a shape of (22 × 11) for each agent.

The state at each timestep includes the agent’s position

(x, y), heading angle (θ), velocity (vx, vy), bounding box

size (L,W,H), and one-hot category encoding of the agent

(totally three types). All historical states for each agent are

aggregated into a fixed-shape tensor of (22×11×11), with

missing agent states padded as zeros, to form the input ten-

sor of historical agent states.

For each target agent, up to 6 drivable lanes (each extend-

ing 100 meters) that the agent may take are identified using

depth-first search on the road graph, along with 4 nearby

crosswalks as the local map context, with each map vector

containing 100 waypoints. The features of a waypoint in a

drivable lane include the position and heading angles of the

centerline, left boundary, and right boundary, speed limit, as

well as discrete attributes such as the lane type, traffic light

state, and controlled by a stop sign. The features of a way-

point in the crosswalk polyline only encompass position and

heading angle. Therefore, the local map context for a tar-

get agent comprises two tensors: drivable lanes with shape

(6× 100× 15) and crosswalks with shape (4× 100× 3).

Encoder structure. In the encoder part, we utilize two

separate LSTMs to encode the historical states of the target

and background agents, respectively, resulting in a tensor

with shape (22 × 256) that encompasses all agents’ histor-

ical state sequences. The local map context encoder con-

sists of a lane encoder for processing the drivable lanes and

a crosswalk encoder for the crosswalk polylines. The lane

encoder employs MLPs to encode numeric features and em-

bedding layers to encode discrete features, outputting a ten-

sor of encoded lane vectors with shape (2×6×100×256),
while the crosswalk encoder uses an MLP to encode nu-

meric features, resulting in a tensor of crosswalk vectors

with shape (2× 4× 100× 256). Subsequently, we utilize a

max-pooling layer (with a step size of 10) to aggregate the

waypoints from a drivable lane in the encoded lane tensor,

yielding a tensor with shape (2 × 6 × 10 × 256) that is re-

shaped to (2× 60× 256). Similarly, the encoded crosswalk

tensor is processed using a max-pooling layer with a step

size of 20 to obtain a tensor with shape (2 × 20 × 256).
These two tensors are concatenated to produce an encoded

local map context tensor with shape (2 × 80 × 256). For

each target agent, we concatenate its local map context ten-

sor with the historical state tensor of all agents to obtain a

scene context tensor with dimensions of (102 × 256), and

we use self-attention Transformer encoder layers to extract

the relationships among the elements in the scene. It is im-

portant to note that invalid positions in the scene context

tensor are masked from attention calculations.

Decoder structure. For the M = 6 joint prediction

model, we employ the learnable latent modality embedding

with a shape of (2 × 6 × 256). For each agent, the query

(6 × 256) in the level-0 decoder is obtained by summing

up the encoding of the target agent’s history and its corre-

sponding latent modality embedding; the value and key are

derived from the scene context by the encoder. The level-0

decoder generates the multi-modal future trajectories of the

target agent with x and y coordinates using an MLP from

the attention output. The scores of each trajectory are de-

coded by another MLP with a shape of (6 × 1). In a level-

k decoder, we use a shared future encoder across different

layers, which includes an MLP and a max-pooling layer, to

encode the future trajectories from the previous level into

a tensor with a shape of (6 × 256). Next, we employ the

trajectory scores to average-pool the encoded trajectories,

which results in the encoded future of the agent. The en-

coded futures of the two target agents are then fed into a

self-attention Transformer layer to model their future inter-

action. Finally, the output of the Transformer layer is ap-

pended to the scene context obtained from the encoder.

For the M = 64 marginal prediction model, we use a set

of 64 fixed intention points that are encoded with MLPs to

create the modality embedding with shape (2 × 64 × 256).

This modality embedding serves as the query input for the

level-0 decoder. The fixed intention points are obtained

through the K-means method from the training dataset. For

each scene, the intention points for the two target agents are

normalized based on the focal agent’s coordinate system.

The other components of the decoder are identical to those

used in the joint prediction model.

Training. In the training dataset, each scene contains

several agent tracks to predict, and we consider each track

sequentially as the focal agent, while the closest track to



the focal agent is chosen as the interacting agent. The task

is to predict six possible joint future trajectories of these

two agents. We employ only imitation loss at each level to

improve the prediction accuracy and training efficiency.

In the joint prediction model, we aim to predict the joint

and scene-level future trajectories of the two agents. There-

fore, we backpropagate the loss through the joint future

trajectories of the two agents that most closely match the

ground truth (i.e., have the least sum of displacement er-

rors). In the marginal prediction model, we backpropagate

the imitation loss to the individual agent through the posi-

tive GMM component that corresponds to the closest inten-

tion point to the endpoint of the ground-truth trajectory.

Our models are trained for 30 epochs using the AdamW

optimizer with a weight decay of 0.01. The learning rate

starts with 1e-4 and decays by a factor of 0.5 every 3 epochs

after 15 epochs. We also clip the gradient norm of the net-

work parameters with the max norm of the gradients as 5.

We train the models using 4 NVIDIA Tesla V100 GPUs,

with a batch size of 64 per GPU.

Testing. The testing dataset has three types of agents:

vehicle, pedestrian, and cyclist. For the vehicle-vehicle in-

teraction, we randomly select one of the two vehicles as

the focal agent. For other types of interaction pairs (e.g.,

cyclist-vehicle and pedestrian-vehicle), we consider the cy-

clist or pedestrian as the focal agent. For the marginal pre-

diction model, we employ the Expectation-Maximization

(EM) method to aggregate trajectories for each agent.

Specifically, we use the EM method to obtain 6 marginal

trajectories (along with their probabilities) from the 64 tra-

jectories predicted for each agent. Then, we consider the

top 6 joint predictions from the 36 possible combinations of

the two agents, where the confidence of each combination

is the product of the marginal probabilities.

A.2. Planning­oriented Model

Model inputs. In each scene, we consider the AV and 10

surrounding agents to perform planning for the AV and pre-

diction for other agents. The AV’s current state is the origin

of the local coordinate system. The historical states of all

agents in the past two seconds are extracted; for each agent,

we find its nearby 6 drivable lanes and 4 crosswalks. Addi-

tionally, we extract the AV’s traversed lane waypoints from

its ground truth future trajectory and use a cubic spline to

interpolate these waypoints to generate the AV’s reference

route. The reference route extends 100 meters ahead of the

AV and contains 1000 waypoints with 0.1 meters intervals.

It is represented as a tensor with shape (1000× 5). The ref-

erence route tensor also contains information on the speed

limit and stop points in addition to positions and headings.

Model structure. For each agent, its scene context ten-

sor is created as a concatenation of all agents’ historical

states and encoded local map elements, resulting in a ten-

sor of shape (91 × 256). In the decoding stage, a learn-

able modality embedding of size (11 × 6 × 256) and the

agent’s historical encoding are used as input to the level-0

decoder, which outputs six possible trajectories along with

corresponding scores. In the level-k decoder, the future en-

codings of all agents are obtained through a self-attention

module of size (11 × 256), and are concatenated with the

scene context tensor from the encoder. This concatenation

generates an updated scene context tensor with a shape of

(102 × 256). When decoding an agent’s future trajectory

at the current level, the future encoding of that agent in the

scene context tensor is masked to avoid using its previously

predicted future information.

Training. In data processing, we filter those scenes

where the AV’s moving distance is less than 5 meters (e.g.,

when stopping at a red light). Similarly, we perform joint

future prediction and calculate the imitation loss through

the joint future that is closest to the ground truth. The

weights for the imitation loss and interaction loss are set

to w1 = 1, w2 = 0.1. Our model is trained for 20 epochs

using the AdamW optimizer with a weight decay of 0.01.

The learning rate is initialized to 1e-4 and decreases by a

factor of 0.5 every 2 epochs after the 10th epoch. We train

the model using an NVIDIA RTX 3080 GPU, with a batch

size of 32.

Testing. The testing scenarios are extracted from the

WOMD, wherein the ego agent shows dynamic driving be-

haviors1. In open-loop testing, we check collisions between

the AV’s planned trajectory and other agents’ ground-truth

future trajectories, and we count a miss if the distance be-

tween AV’s planned state at the final step and the ground-

truth state is larger than 4.5 meters. The planning errors and

prediction errors are calculated according to the most-likely

trajectories scored by the model. In closed-loop testing, the

AV plans a trajectory at every timestep with an interval of

0.1 seconds and executes the first step of the plan.

A.3. Baseline Methods

To compare model performance, we introduce the fol-

lowing learning-based planning baselines.

Vanilla Imitation Learning (IL): A simplified version

of our model that directly outputs the planned trajectory of

the AV without explicitly reasoning other agents’ future tra-

jectories. The plan is only a single-modal trajectory. The

original encoder part of our model is utilized, but only one

decoder layer with the ego agent’s historical encoding as the

query is used to decode the AV’s plan.

Deep Imitative Model (DIM): A probabilistic planning

method that aims to generate expert-like future trajectories

q (S1:T |φ) =
∏T

t=1 q (St|S1:t−1, φ) given the AV’s obser-

1https://github.com/smarts-project/smarts-

project.offline-datasets/blob/master/waymo_

candid_list.csv



vations φ. We follow the original open-source DIM imple-

mentation and use the rasterized scene image R
200×200×3

and the AV’s historical states R11×5 as the observation. We

use a CNN to encode the scene image and an RNN to en-

code the agent’s historical states. The AV’s future state is

decoded (as a multivariate Gaussian distribution) in an au-

toregressive manner. In testing, DIM requires a specific

goal G to direct the agent to the goal, and a gradient-based

planner maximizes the learned imitation prior log q (S|φ)
and the test-time goal likelihood log p(G|S, φ).

Robust Imitative Planning (RIP): An epistemic

uncertainty-aware planning method that is developed upon

DIM and shows good performance in conducting robust

planning in out-of-distribution (OOD) scenarios. Specifi-

cally, we employ the original open-source implementation

and choose the worst-case model that has the worst likeli-

hood mind log q (S1:T |φ) among d = 6 trained DIM mod-

els and improve it with a gradient-based planner.

Conservative Q-Learning (CQL): A widely-used of-

fline reinforcement learning algorithm that learns to make

decisions from offline datasets. We implement the CQL

method with the d3rlpy offline RL library2. The RL agent

takes the same state inputs as the DIM method and outputs

the target pose of the next step (∆x,∆y,∆θ) relative to the

agent’s current position. The reward function is the distance

traveled per step plus an extra reward for reaching the goal,

i.e., rt = ∆dt+10×✶ (d(st, sgoal) < 1). Since the dataset

only contains perfect driving data, no collision penalty is

included in the reward function.

Differentiable Integrated Prediction and Planning

(DIPP): A joint prediction and planning method that uses a

differentiable motion planner to optimize the trajectory ac-

cording to the prediction result. We adopt the original open-

source implementation and the same state input setting. We

increase the historical horizon to 20 and the number of pre-

diction modalities from 3 to 6. In open-loop testing, we uti-

lize the results from the DIPP prediction network without

trajectory planning (refinement).

MultiPath++: A high-performing motion prediction

model that is based on the context-aware fusion of hetero-

geneous scene elements and learnable latent anchor embed-

dings. We utilize the open-source implementation of Mul-

tiPath++3 that achieved state-of-the-art prediction accuracy

on the WOMD motion prediction benchmark. We train the

model to predict 6 possible trajectories and corresponding

scores for the ego agent using the same dataset. In open-

loop testing, only the most-likely trajectory will be used as

the plan for the AV.

Motion Transformer (MTR)-e2e: A state-of-the-art

prediction model that occupies the first place on the WOMD

2https://github.com/takuseno/d3rlpy
3https://github.com/stepankonev/waymo-motion-

prediction-challenge-2022-multipath-plus-plus

motion prediction leaderboard. We follow the original

open-source implementation of the context encoder and

MTR decoder. However, we modified the decoder to use

an end-to-end variant of MTR that is better suited for the

open-loop planning task. Specifically, only 6 learnable mo-

tion query pairs are used to decode 6 possible trajectories

and scores. The same dataset is used to train the MTR-e2e

model, and the data is processed according to the MTR con-

text inputs.

A.4. Refinement Planner

Inverse dynamic model. To convert the initial planned

trajectory to control actions {at, δt} (i.e., acceleration and

yaw rate), we utilize the following inverse dynamic model.

Φ−1 : vt =
∆p

∆t
=

∥ pt+1 − pt ∥

∆t
,

θt = arctan
∆py
∆px

,

at =
vt+1 − vt

∆t
,

δt =
θt+1 − θt

∆t
,

(S1)

where pt is a predicted coordinate in the trajectory, and ∆t
is the time interval.

Dynamic model. To derive the coordinate and heading

{pxt, pyt, θ} from control actions, we adopt the following

differentiable dynamic model.

Φ : vt+1 = at∆t+ vt,

θt+1 = δt∆t+ θt,

pxt+1 = vt cos θt∆t+ pxt,

pyt+1 = vt sin θt∆t+ pyt.

(S2)

Motion planner. We use a differentiable motion plan-

ner proposed in DIPP to plan the trajectory for the AV. The

planner takes as input the initial control action sequence de-

rived from the planned trajectory given by our model. We

formulate each planning cost term ci as a squared vector-

valued residual, and the motion planner aims to solve the

following nonlinear least squares problem:

u∗ = argmin
u

1

2

∑

i

∥ ωici(u) ∥
2, (S3)

where u is the sequence of control actions, and ωi is the

weight for cost ci.
We consider a variety of cost terms as proposed in DIPP,

including travel speed, control effort (acceleration and yaw

rate), ride comfort (jerk and change of yaw rate), distance

to the reference line, heading difference, as well as the cost

of violating traffic light. Most importantly, the safety cost

takes all other agents’ predicted states into consideration

and avoids collision with them, as illustrated in DIPP.



We use the Gauss-Newton method to solve the optimiza-

tion problem. The maximum number of iterations is 30,

and the step size is 0.3. We use the best solution during the

iteration process as the final plan to execute.

Learning cost function weights. Since the motion plan-

ner is differentiable, we can learn the weights of the cost

terms by differentiating through the optimizer. We use the

imitation learning loss below (average displacement error

and final displacement error) to learn the cost weights, as

well as minimize the sum of cost values. We set the maxi-

mum number of iterations to 3 and the step size to 0.5 in the

motion planner. We use the Adam optimizer with a learning

rate of 5e-4 to train the cost function weights; the batch size

is 32 and the total number of training steps is 10,000.

L = λ1

∑

t

||ŝt − st||
2 + λ2||ŝT − sT ||

2 + λ3

∑

i

||ci||
2,

(S4)

where λ1 = 1, λ2 = 0.5, λ3 = 0.001 are the weights.

A.5. GameFormer Planner

To validate our model’s performance on the nuPlan

benchmark4, we have developed a comprehensive planning

framework to handle the realistic driving scenarios in nu-

Plan. The planning process comprises the following steps:

1) feature processing: relevant data from the observation

buffer and map API undergoes preprocessing to extract in-

put features for the prediction model; 2) path planning: can-

didate route paths for the ego vehicle are computed, from

which the optimal path is selected as the reference path; 3)

model query: the prediction model is queried to generate

an initial plan for the ego vehicle and predict the trajecto-

ries of surrounding agents; and 4) trajectory refinement: a

nonlinear optimizer is employed to refine the ego vehicle’s

trajectory on the reference path and produce the final plan.

For computational efficiency, we use a compact version of

the GameFormer model, configuring it with 3 encoding lay-

ers and 3 decoding layers (1 initial decoding layer and 2

interaction decoding layers). Additionally, we introduce an

extra decoding layer after the last interaction decoding layer

to separately generate the ego vehicle’s plan. The ego plan

is then projected onto the reference path as an initialization

of the refinement planner. The output of the GameFormer

model consists of multimodal trajectories for the surround-

ing agents. For each neighboring agent, we select the trajec-

tory with the highest probability and project it onto the ref-

erence path using the Frenet transformation, subsequently

calculating spatiotemporal path occupancy. A comprehen-

sive description of the planning framework can be found in

this dedicated report5.

4https://eval.ai/web/challenges/challenge-

page/1856/overview
5https://opendrivelab.com/e2ead/AD23Challenge/

Track_4_AID.pdf

B. Additional Quantitative Results

B.1. Interaction Prediction

Table S1 displays the per-category performance of our

models on the WOMD interaction prediction benchmark,

in comparison with the MTR model. The GameFormer

joint prediction model exhibits the lowest minFDE across

all object categories, indicating the advantages of our model

and joint training of interaction patterns. Our Game-

Former model surpasses MTR in the cyclist category and

achieves comparable performance to MTR in other cate-

gories, though with a much simpler structure than MTR.

Table S1. Per-class performance of interaction prediction on the

WOMD interaction prediction benchmark

Class Model minADE (↓) minFDE (↓) Miss rate (↓) mAP (↑)

Vehicle

MTR 0.9793 2.2157 0.3833 0.2977

GF (J) 0.9822 2.0745 0.3785 0.1856

GF (M) 1.0499 2.4044 0.4321 0.2469

Pedestrian

MTR 0.7098 1.5835 0.3973 0.2033

GF (J) 0.7279 1.4894 0.4272 0.1505

GF (M) 0.7978 1.8195 0.4713 0.1962

Cyclist

MTR 1.0652 2.3908 0.5428 0.1102

GF (J) 1.0383 2.2480 0.5536 0.0768

GF (M) 1.0686 2.4199 0.5765 0.1338

B.2. nuPlan Benchmark

Table S2 presents a performance comparison between

our planner and the DIPP planner. For the benchmark eval-

uation, we replace the prediction model in the proposed

planning framework with the DIPP model and other parts

of the framework remain the same. The results show that

the GameFormer model still outperforms the DIPP model,

as a result of better initial plans for the ego agent and pre-

diction results for other agents.

Table S2. Comparison with DIPP planner on the nuPlan testing

benchmark

Method Overall OL CL non-reactive CL reactivate

DIPP 0.7950 0.8141 0.7853 0.7857

Ours 0.8288 0.8400 0.8087 0.8376

B.3. Abalation Study

Effects of decoding levels on closed-loop planning.

We investigate the influence of decoding levels on closed-

loop planning performance in selected WOMD scenarios,

using the success rate (without collision) as the main metric.

We also report the inference time of the prediction network

(without the refine motion planner) in closed-loop planning,

which is executed on an NVIDIA RTX 3080 GPU. The re-

sults in Table S3 reveal that increasing the decoding lay-

ers could potentially lead to a higher success rate, and even

adding a single layer of interaction modeling can bring sig-

nificant improvement compared to level-0. In closed-loop



testing, the success rate reaches a plateau at a decoding

level of 2, while the computation time continues to increase.

Therefore, using two reasoning levels in our model may of-

fer a favorable balance between performance and efficiency

in practical applications.

Table S3. Effects of decoding levels on closed-loop planning

Level Success rate (%) Inference time (ms)

0 89.5 31.8

1 92.25 44.1

2 94 56.7

3 94.5 66.5

4 94.5 79.2

C. Additional Qualitative Results

C.1. Interaction Prediction

Fig. S1 presents additional qualitative results of our

GameFormer framework in the interaction prediction task,

showcasing the ability of our method to handle a variety of

interaction pairs and complex urban driving scenarios.

C.2. Level­k Prediction

Fig. S2 illustrates the most-likely joint trajectories of

the target agents at different interaction levels. The results

demonstrate that our proposed model is capable of refining

the prediction results in the iterated interaction process. At

level-0, the predictions for target agents appear more inde-

pendent, potentially leading to trajectory collisions. How-

ever, through iterative refinement, our model can generate

consistent and human-like trajectories at a higher interac-

tion level.

C.3. Open­loop Planning

Fig. S3 provides additional qualitative results of our

model in the open-loop planning task, which show the abil-

ity of our model to jointly plan the trajectory of the AV and

predict the behaviors of neighboring agents.

C.4. Closed­loop Planning

We visualize the closed-loop planning performance of

our method through videos available on the project website,

including interactive urban driving scenarios from both the

WOMD and nuPlan datasets.
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Figure S1. Additional qualitative results of interaction prediction. The red boxes are interacting agents to predict, and the magenta boxes

are background neighboring agents. Six joint trajectories of the two interacting agents are predicted.
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Figure S2. Prediction results of the two interacting agents at different reasoning levels. Only the most-likely joint trajectories of the target

agents are displayed for clarity.
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Figure S3. Additional qualitative results of open-loop planning. The red box is the AV and the magenta boxes are its neighboring agents;

the red trajectory is the plan of the AV and the blue ones are the predictions of neighboring agents.


