
A. Additional expertiment

A.1. Impact of Different Fraction of Clients Selected
for Aggregation

In each round of federated training, our method dis-
tinguishes the benign gradients from the malicious ones
through multiple metrics and dynamic scoring. Then be-
nign gradients are used to perform aggregation while the
malicious ones are discarded without impacting the global
model, as described in Section 3.4. In practice, we set a
fixed ratio p(p ∈ [0, 1]) to denote the fraction of the se-
lected gradients. At each round, p percentage of gradients
are deemed benign and participate in the FedAvg aggrega-
tion. Intuitively, the performance of the model and the con-
vergence speed of training are positively related to p. In
contrast, the relationship between the accuracy of backdoor
tasks and p is much more complicated. On the one hand,
increasing the value of p would increase the probability of
selecting the backdoor gradient for training, which is not
beneficial for defending against backdoor attacks. On the
other hand, increasing the value of p will mitigate the im-
pact of selecting the backdoor gradient, which is beneficial
for the defense. However, because of an absence of knowl-
edge regarding the attacker (e.g. the number of attackers),
optimal p cannot simply be determined. In this case, what
is most essential is that the defense performance is invariant
(or often invariant) to the choice of p, which we empirically
prove below. By conducting experiments on CIAFR10 and
EMNIST with the Edge-case PGD attack, we show that our
outstanding defense performance does not heavily rely on
the tuning of p. Results in Figure 8 show that the optimal
p is at 0.3 but p between 0.1 and 0.7 provides consistently
low BA, where our approach has solid defensive effective-
ness. Krum and Multi-Krum also select some clients to ag-
gregate, which we make a comparison in terms of defense
performance with our proposed method under different p.
We demonstrate that our success against this attack does
not rely on an optimal p and consistently gives better results
against the Krum and Multi-Krum with different p values.
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Figure 8: Accuracy(%) of our defense and extended-Krum
under Edge-case PGD attack versus the value of p, where
p denotes the fraction of clients selected for aggregation by
our method.

A.2. Ablation on Different Definitions for Outlier
Detection

We also conduct an ablation study on the definition, as
introduced by Equation 3. We perform experiments and
compare the results of the simple approach (i.e. use the
deviation from the mean to detect the outlier as a mali-
cious gradient). As the results in Table 5, we observe that
the simple approach is already effective under different at-
tacks. Specifically, with a simple approach, our defense
can achieve 7.14% BA under Edge-case PGD which already
outperforms the previous state-of-the-art methods by almost
40%, demonstrating the effectiveness of our multi-metrics
adaptive defense method. By incorporating the new defi-
nition, we achieve the lowest 3.06%. Results under other
attacks are also consistent. We note that our new definition
increases the overall performance (i.e. MA) under the three
attacks consistently. This demonstrates that our defense can
aggregate the truly benign gradients since this new defini-
tion helps further identify the malicious gradients.

Table 5: Impact of different definitions for outlier detection
against various attacks on CIFAR10.

Defense Model Replacement PGD Edge-case PGD

MA ↑ BA ↓ MA ↑ BA ↓ MA ↑ BA ↓
Mean 85.91 0.56 85.83 1.67 85.82 7.14
Ours 86.34 0.56 86.44 0.56 86.86 3.06

Table 6: Computational measured in seconds. We report the
increment over FedAvg.

Defense FedAvg Krum RFA Foolsgold

Computational Cost (s) 24.62 25.98(+1.36) 31.08(+6.46) 78.67(+54.05)

Defense Single metric Dual metrics Tri metrics (Ours) Four metrics

Computational Cost (s) 25.55(0.93) 26.14(1.52) 30.19(+5.57) 33.74(+9.12)

A.3. Computational Cost Analysis

We acknowledge that there is a slight increase in com-
putation overhead compared to FedAvg, we emphasize that
the additional cost is marginal and significantly lower than
the previous SOTA, Foolsgold, as shown in Table 6.

B. Training Hyperparameters

The pixel-pattern backdoor data used in the DBA attack
is the same as that in Xie et al. [50]. Following [47], we
use the data from Southwest Airlines as the dataset for the
semantic backdoor attack. Particularly, edge-case indicates
that the backdoor data exists only in the attacker’s dataset.
For a normal attack (non-edge-case), we distribute 10% of
the correctly labelled backdoor data to benign clients.



Table 7: The training settings for our experiment.

Hyperparameter
backdoor type

semantic trigger
CIFAR10 EMNIST Sentiment140 CIFAR10 EMNIST LOAN

backdoor data Southwest Airlines Ardis Greek Director N/A N/A N/A
#clients 200 200 2000 100 100 100

#clients selected in each round 10 10 10 10 10 10
#attackers in each round 1 1 1 4 4 4
#attackers local iteration 5 5 2 6 10 5
#benign local iteration 2 2 2 2 1 1

#global iteration 1500 1500 200 300 70 70
batch size 64 64 20 64 64 64

attack interval 10 10 10 1 1 1
no.iid parameter 0.5 0.5 1 0.5 0.5 0.9

benign learning rate 0.02 0.02 0.05 0.1 0.1 0.001
attackers learning rate 0.02 0.02 0.05 0.05 0.05 0.0005

The hyperparameters in FL system can be seen in Table
7, which used in defenses is as follows:

• Multi-krum:In our experiment, we select the hyperpa-
rameter m = n − f (where n stands for the number
of participating clients and f stands for the number of
tolerable attackers);

• RFA:We set v = 10−5 (smoothing factor), ε =
10−1(fault tolerance threshold), T = 500 (maximum
number of iterations);

• Weak-DP:In our experiment, we use σ = 0.0025 and
set the norm difference threshold at 2.

• Flame: In our experiment, we follow the original paper
and use small noise σ = 0.001.

C. Proof of Proposition 1
From the Lemma 1, we can compute the value of Md and

Ud approximately below, where Md = Dmax1
d −Dmin1

d

reflects the discriminating ability of Manhattan distance and
Ud = Dmax2

d −Dmin2
d reflects the discriminating ability

of Euclidean distance.
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where C1 is a constant.

lim
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E [Ud] = C2. (6)

where C2 is a constant. Thus, we can divide them to com-
pare the Md and Ud as follows:
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where C’ is a constant.

D. Ranking Score

To facilitate a comprehensive comparison that involves
multiple attack methods and two metrics (i.e. MA and BA),
we base on the ranking score in [52] and design a new scor-
ing rank that considers both the two metrics and the rela-
tive improvement over baseline. The original ranking score
used in [52] aims to compare the performance over multiple
domain generalization datasets while we want to compare
the defense over a set of attacks. They first set a baseline
method and for every dataset-algorithm pair, depending on
whether the attained accuracy is lower or higher than the
baseline accuracy on the same dataset, -1 or +1 is assigned
and they add up the scores across all datasets to produce
the ranking score for each algorithm. Why don’t we use
the original ranking score? The problem with the original
score is, despite using +1 and -1 to indicate higher or less,
the relative improvement or decrease is not explicitly ac-
counted for in the final score, which can be problematic in
our setting as defense performance varies a lot across dif-
ferent attacks (from ∼ 10% to ∼ 90%) and scales of the
two metrics are also significantly different (from ∼ 30%
to ∼ 80%). For example, if one method obtains a small
improvement (e.g. 1%) on MA, but a much worse BA (de-
crease by 30%), the original score method gives a +1 and -1
which makes this method as good as the baseline. However,
sacrificing a little MA is still a good price to pay for a large
BA improvement. Thus, we propose our new ranking score
as followed. We first set a baseline method, i.e. FedAvg.
Then for each defense method, each attack and each metric,
we calculate the relative improvement with respect to the



baseline:
scoreK =

K −B

B

where K denotes the MA or BA of some methods and B
denotes the MA and BA of the baseline. Adding up the
score for MA and BA

scoreMA − scoreBA

across all attacks produces the ranking score for each de-
fense. Note here we use subtraction instead of addition
since a smaller BA means better defense. Another benefit
of this metric is that we can show an average of relative im-
provement over the baseline, which gives us a sense of how
good each method is. We compare our defense with previ-
ous SOTA on this metric and provide a detailed analysis in
Section 5.1.


