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1. Implementation Details
In this section, we provide important implementation de-

tails for our experiments. We also publicly release our ex-
periment code, results, and model checkpoints at https:
//huangyangyi.github.io/ELICIT for research
purposes.

1.1. Optimization

In this section, we provide details about the two-stage
optimization process of ELICIT. For loss weights settings
in Eq. (7), we set λCLIP = 0.1, λsil = 0.01 are the loss
weights. We do not use text prompts in our experiments
unless specified, for a fair comparison with baseline meth-
ods. The initialization stage takes Tinit = 15, 000 iterations
of optimization, while the one-shot training stage takes
Ttrain = 20, 000 iterations. The entire training process
for each subject takes approximately 5 hours on 4 NVIDIA
Tesla V100 GPUs. We follow the hyper-parameter settings
of the HumanNeRF[15] code for the optimizer, learning
rate, and ray sampling configurations. Specifically, we only
train Ttrain = 5, 000 for quantitative comparison on novel
view synthesis in Tab. 2.

1.2. Details of hybrid sampling strategy

In this section, we provide a detailed description of our
hybrid sampling strategy, which combines body-part-aware
sampling and rotation-aware sampling in one-shot training.

For each iteration, we randomly decide whether to sam-
ple a novel view from {(θi, ej)}L,M

i=1,j=1 or the input view
Vs = (θs, es) with a probability of pnovel = 0.5. If
Vtrain = Vs, we follow HumanNeRF to sample a pair of
patches for reconstruction. Otherwise, we randomly select
a body part k (including the whole body) with weighted
probability{pkpart}Kk=1, and sample a training patch V k

train

which is decided by the bounding box of SMPL rendered

body-part segmentation Sk
SMPL(Vtrain).

After sampling the training patch, we sample the ref-
erence patch from the Vs or other views of the same pose
{(θtrain, ej)}Mj=1,j ̸=i. The camera views of the current pose
are divided into front views, rear views, left views, and right
views according to the body rotation angle. We assume that
the input image is close to the front view of the character. If
a rear view of specific body parts (e.g. head, upper body, or
whole body) is sampled as the training view, we randomly
sampled nearest views from left views and right views as
Vref . Then we render body-part patch V k

ref by our NeRF
model as reference. Otherwise, the reference patch will be
constructed by the resized patch V k

s cropped from the input
image. We set the size of patches in training to 224×224
for all experiments, the same as the input resolution of the
CLIP ViT/L-14 model we use for semantic prior.

1.3. Detailed configuration of evaluation

In this section, we provide the detailed configuration
of our quantitative comparison on ZJU-MoCap dataset and
Human 3.6M dataset.

1.3.1 Data splitting

For per-subject optimization methods Animatable
NeRF[11] (Ani-NeRF) and NeuralBody[13] (NB), we
use all subjects of ZJU-MoCap data-set (313, 315, 377,
386, 387, 390, 392, 393, 394) and the ”Posing” sequences
of Human 3.6M dataset (S1, S5, S6, S7, S8, S9, S11).
We provide information on the single input frame of
each subject to evaluate novel pose synthesis, and the 10
frames of each subject we sampled to evaluate novel view
synthesis in our experiment code.

For Neural Human Performer[7] (NHP), since it requires
pre-training on subjects from the same dataset, we only
evaluated NHP with 3 testing subjects from each dataset:



ZJU Mocap (313, 315, 387), Human 3.6M (S8, S9, S11),
and use remaining subjects for pre-training.

1.3.2 Baseline settings

Neural Human Performer[7]. We modify NHP to take
only one input view from the first camera of ZJUMoCAP
or the third camera of H36M and train the model with novel
view ground truth from all other available cameras. We
keep other hyperparameters the same as original paper and
trained each model with 1000 epochs.
NeuralBody[11]. We train NB models for each input frame
by optimizing the model only on the single input image. We
set the number of optimization iterations to 50K, which is
enough for NB to converge on the input image (total loss <
0.0001). We keep other hyper-parameter the same as origi-
nal paper.
Animatable NeRF[11]. We choose Ani-NeRF with pose-
dependent fields (PDF), which presents the best results in
the original paper. We also train Ani-NeRF models until
convergence, similar to the setting of NB.

2. Additional Results

2.1. Comparison with MonoNHR

To compare our method with MonoNHR[2], which re-
ports state-of-the-art results on human-specific novel view
synthesis from a single monocular input, we present qualita-
tive results of MonoNHR and ELICIT on the ZJU-MoCAP
dataset. As full results from MonoNHR are not available,
we use the novel view synthesis results from its official
qualitative video and compare them with the same input
view on ELICIT.

As shown in Figure R.1, while MonoNHR can estimate
approximate clothed body geometry, it produces blurry con-
tents on the novel views, whereas ELICIT generates more
realistic details on human faces, bodies, and clothing.

2.2. Ablation Study

2.2.1 Differerent pretrained visual models

As discussed in Section 4.4, we also compare the perfor-
mance of different pre-trained visual models, including an
DINO [1] ViT used by SinNeRF [16], an ImageNet pre-
trained ViT/L-14 [4, 3], an unsupervised pre-trained ViT/L-
14 by MAE [5], also a lighter version of CLIP ViT/B-
32. As shown in Figure R.2, CLIP ViT/L-14 shows best
performance in capturing 3D-aware human body structure
and generating vivid visual details, and the two CLIP pre-
trained models have a better performance on head structure
than Image pre-trained models. This comparison suggests
that the rich pre-training data of the CLIP model, as well
as the larger model capacity of CLIP ViT/L-14 compared

Input view OursMonoNHRGT

Figure R.1: Qualitative comparison with MonoNHR[2]. While
MonoNHR produces blurry faces, ELICIT generates realistic facial de-
tails, demonstrating the superior performance of our method.

to CLIP ViT/B-32, are key factors contributing to the effec-
tiveness of our semantic loss.

�����
���


	�����
���


	������
���


	��!�$�
2�-1


	��)��,
�8<@?-?7

	������

Figure R.2: Qualitative results for the ablation studies of vision models
used for the semantic loss, selected from DeepFashion[8] dataset. The
CLIP ViT/L-14 model we use produce best detailed geometry and textures.

2.2.2 Hybrid sampling strategy

To thoroughly evaluate the effectiveness of our proposed
hybrid sampling strategy, we conducted a detailed abla-
tion study on both body-part-aware sampling and rotation-
aware sampling. As shown in Figure R.3, our results in-
dicate that body-part-aware sampling improves ELICIT’s
ability to synthesize realistic details on crucial body parts
with fine-grained supervision. Additionally, rotation-aware
sampling successfully avoids artifacts of mirrored appear-
ance by using neighboring views as a reference to recover
heavily occluded body regions.

2.2.3 Comparing CLIP loss with perceptual losses

In our main paper, we compared our CLIP-based semantic
loss with various embedding losses that capture high-level
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Figure R.3: Ablation study of hybrid sampling strategy. Comparison
of training with different sampling strategies: without (a) body-part-aware
sampling, without (b) rotation-aware sampling, and full hybrid sampling
strategy. The absence of either sampling strategy leads to artifacts, such as
mirrored appearance or missing details on important body parts.

semantics. However, since the CLIP loss can also capture
low-level visual attributes such as color and texture, we fur-
ther evaluated its effectiveness by comparing it with two
commonly-used perceptual losses: LPIPS[17] and VGG-
based perceptual loss[6], in generative and reconstruction
tasks. As depicted in Figure R.4, LPIPS loss and VGG loss
only capture a subset of low-level visual features and cannot
synthesize 3D-aware appearance with high-fidelity details
in occluded areas, unlike CLIP-loss.

Figure R.4: Comparison of CLIP loss to other perceptual losses. LPIPS
and VGG-based perceptual losses only capture a subset of low-level visual
features, leading to limited performance in synthesizing occluded clothed
body appearance compared to CLIP loss.

2.3. Extensions

ELICIT proposes a simple and effective pipeline for cre-
ating animatable avatars with implicit representation and
model-based prior. The pipeline is also extensible for fu-
ture improvements with different implicit human represen-
tations, semantic priors, geometric priors, and input set-
tings. In this section, we introduce several extensions of
ELICIT that can inspire future work.

2.3.1 Alternative human representations

ELICIT can be trained using various implicit human repre-
sentations. For example, as shown in Figure R.5, we re-
placed the HumanNeRF model used in ELICIT with an
SDF-based model from Animatable NeRF[12, 11]. This al-
ternative representation performed better in surface geom-

etry, while HumanNeRF produced blurry floating artifacts
near the body that decreased the rendering quality. Such
explorations with different implicit human representations
can lead to further improvements in the quality of the syn-
thesized avatars.

Figure R.5: Improved human representation. The SDF-based model
from Ani-NeRF[12] reduces floating artifacts (marked with red rectan-
gles), which are commonly present in our HumanNeRF-based model, lead-
ing to better surface geometry.

2.3.2 Editing 3D avatars with textual guidance

As we discussed in our main paper, we can improve the
performance of semantic prior by incorporating user text
prompts through text-based CLIP guidance and image-
based CLIP guidance. In addition, as shown in Figure R.6,
ELICIT can generate different text-conditioned appear-
ances using different text prompts, such as manipulating the
occluded texture of clothing. These results demonstrate the
potential for using ELICIT’s pipeline for digital human edit-
ing tasks with further improvements.

Figure R.6: Generating text-conditioned appearance. By using different
prompts, we can generate various texture patterns in the occluded area of
clothing. While the quality of synthesis is limited, it demonstrates the
potential of ELICIT for editing 3D avatars.

2.3.3 Utilizing multiple images

ELICIT can be enhanced by utilizing multiple input images
to better recover full-body appearances. It’s worth noting
that ELICIT can utilize images of different poses without
requiring well-aligned pose annotations, by taking one im-
age for reconstruction and using the others as a reference
in the CLIP loss. As shown in Figure R.7, we demonstrate
the effectiveness of this approach by incorporating an extra
back-side image, resulting in better full-body appearance.
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Figure R.7: Utilizing multiple images. ELICIT can utilize images of dif-
ferent poses as an extra reference to better recover full-body appearance.

3. Limitations
The human body geometry prior utilized by ELICIT re-

quires well-aligned SMPL annotation of body shape and
postures. When body parts such as hands and legs are heav-
ily misaligned, artifacts may occur due to the model being
initialized incorrectly or failing to sample reference patches
for body-part refinement. Furthermore, modeling hand ge-
ometry and complex clothing geometry precisely remains a
challenge for our method.

Additionally, the computational cost of 5 hours on 4
Tesla V100s per avatar may be prohibitively expensive for
certain applications. Future work could focus on develop-
ing more efficient human-specific NeRFs that require lower
GPU memory, as well as improving the training pipeline to
reduce the number of necessary training iterations.

4. Future Work
We plan to further explore model-based priors that can

potentially improve ELICIT. For semantic prior, we will in-
vestigate the use of image diffusion models [14, 9] which
have been applied to text-to-3D tasks, as they are promising
options for enhancing the appearance details of ELICIT. For
geometric prior, we aim to use a more expressive human-
body prior with SMPL-X [10] to improve detailed geome-
try, such as hand shapes. Regarding implicit representation,
we are exploring options and improvements with higher ef-
ficiency, better surface geometry, and better rendering qual-
ity. Additionally, we are working to enhance the versatility
of our one-shot training framework to accept different types
of inputs (e.g., multiple images, short videos, and images
with a text description).
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