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1. Study of Deep Features on the Frequency
Domain

To investigate the impact of label noise on CNNs trained
using different frequency components from different layers,
we conducted experiments by training a ResNet-18 model
[5] with different label noises. We generated three label
noises: 50% symmetric noise [18, 4], 40% instance noise
[19], and 45% pairflip noise [4]. We trained the ResNet-
18 model under these label noises using PADDLES (Algo-
rithm 1 in our paper) to disentangle and detach the AS/PS
components of the deep features from different ResNet-18
blocks during CNNs training. As the ResNet-18 has four
blocks, we present all deep features extracted from those
blocks under three label noises in Figure 2 (50% symmetric
label noise), Figure 3 (40% instance label noise), and Fig-
ure 4 (45% pairflip label noise). As shown in these figures,
the deep features extracted by different ResNet-18 blocks
share similar behavior with original images, where PS com-
ponents of deep features can help the CNNs become more
robust towards label noises than AS or raw deep features.
These results strongly support the rationality and correct-
ness of our solution for disentangling and manipulating the
model training in the deep image features.

Moreover, we observe that this behavior is more evident
for deeper features (features from Block-4 and Block-3)
than for shallower ones (features from Block-2 and Block-
1). An intuitive explanation is the gradient vanishing phe-
nomenon of CNNs [6]. Due to the gradients being back-
propagated, repeated multiplication and convolution with
small weights render the gradient information ineffectively
small in shallower blocks. Therefore, detaching the AS
or PS-related gradient propagation in the shallower layers
(Block-1 or Block-2) can result in a smaller impact on the
model updating than in deeper layers (Block-3 or Block-4).
These observations also guide the principle of disentangle
point selection. A later disentangle point can achieve better
performance in resisting label noise, which is supported by
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the following study of the disentangle position.

2. Study of Disentangle Position & Hyper-
parameter

An important component of PADDLES is the frequency
disentangling position j, as presented in Algorithm 2. We
chose ResNet models as the backbone and disentangled the
deep features at each ResNet block, with ‘P1’ indicating de-
composition before block 1, ‘P5’ after block 4, and ‘ALL’
representing decomposition at all five positions. As shown
in Figure 1a, we observed that the performance of PAD-
DLES was more stable on CIFAR-10 than on CIFAR-100
at different positions, with the best performances achieved
at P3 and P4.

We investigated the hyper-parameter sensitivity of the
early stopping points for amplitude spectrum TA and phase
spectrum TP in Figures 1b and 1c. All experiments were
conducted on CIFAR-N datasets with a ResNet-34 back-
bone. We varied TA from 18 to 30 with TP = 5 in Fig-
ure 1b, and set TP from 5 to 17 with TA = 30 in Figure 1c.
We observed that with a fixed TP , the performance gener-
ally increased as TA grew for both Fine noise on CIFAR-
100N and Worst noise on CIFAR-10N. When TA was fixed,
very large training steps for PS resulted in performance
degradation, as the model started to overfit the label noises.
Moreover, the performances of our model on CIFAR-10N
dataset with Aggregate noise remained comparatively sta-
ble compared to other noises. The model achieved the best
performance with TA = 30 and TP = 5.

3. Additional Experiments

In this section, we provide more experimental results to
further demonstrate the effectiveness of our methods, in-
cluding results on the WebVision dataset, training curves
under different kinds of noise, and confident samples qual-
ity evaluation.



(a) Disentangle Position

(b) Stopping Point of AS

(c) Stopping Point of PS

Figure 1: Sensitivity analysis for different choices of dis-
entangle positions, early stopping points of AS, and early
stopping points of PS. The Y-axis of each figure represents
the testing accuracy (%).

3.1. Experiment on WebVision Dataset

In this section, we present an experiment that we con-
ducted on the WebVision 1.0 dataset [9] to evaluate the
effectiveness of PADDLES on a large-scale dataset. The
WebVision dataset comprises 2.4 million images sourced
from the internet and categorized into 1,000 semantic con-
cepts in ImageNet ILSCRC12 [15]. To enable easy com-
parison with prior research, we have followed the approach
of [3, 8], which focused on the top 50 classes from the
Google image subset of WebVision 1.0. To conduct the
experiment, we employed InceptionResNetV2 [17] as the
backbone, following prior work [3, 8, 10]. Additionally,
we trained the model using two sub-networks ensembles,
utilizing the SGD optimizer with a momentum of 0.9, and
setting the weight decay at 10−3, with a batch size of 32.

Table 1: Comparison with different methods on mini Web-
Vision dataset. Top-1 and Top-5 test accuracies on the We-
bVision validation set and the ImageNet ILSVRC12 valida-
tion set are given. The results of the baseline methods are
taken from [8].

Method WebVision ILSVRC12

Top1 Top5 Top1 Top5

F-correction[14] 61.12 82.68 57.36 82.36
Decoupling[12] 62.54 84.74 58.26 82.26

D2L[11] 62.68 84.00 57.80 81.36
MentorNet[7] 63.00 81.40 57.80 79.92

Co-teaching[4] 63.58 85.20 61.48 84.70
Iterative-CV[3] 65.24 85.34 61.60 84.98
DivideMix[8] 77.32 91.64 75.20 90.84

PADDLES 77.64 92.08 75.48 91.20

We adopted a one-epoch warm-up training strategy, trained
the model for 100 formal epochs, initialized the learning
rate at 0.01, and used a three-phase OneCycle [16] learning
rate scheduler. We set the disentangling point before the
last convolutional layer of InceptionResNetV2, and TA and
TP were set at 10 and 5, respectively. The results of the
experiment, as shown in Table 1, indicate that PADDLES
outperforms other baseline methods, demonstrating its ef-
fectiveness in handling the WebVision dataset.

3.2. Training Curves with Different Label Noises

More illustration is provided in Figure 5 regarding the
impact of different kinds of label noises on deep models.
Two additional kinds of label noises, the Pairflip [4] with
a 45% noise rate and the Instance [19] with a 40% noise
rate, were generated. It can be observed that the inflection
point of AS’s loss decline is earlier than that of PS compo-
nents, indicating that the converging speed of CNN on AS
is faster than PS. Furthermore, the curves of AS and PS be-
come closer as the training epochs increase, indicating that
the PS is more robust than AS with different label noises.
Another difference between AS and PS is that the number
of training steps to achieve optimal performance is not the
same. Figures 5c and 5f demonstrate that AS achieves the
best performance faster than PS. Both Figure 1 in our paper
and Figure 5 in this material provide inspiration for decom-
posing the AS and PS from the input images and designing
different stopping points to obtain a more robust deep net-
work over previous ES models.

3.3. Confident Samples Quality

The quality of the extracted labels is a pivotal aspect of
any machine-learning model, especially in the realm of im-
age classification. In our study, we examined this quality us-
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(a) ResNet Bolck-1 features under 50% Symmetric label nose
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(b) ResNet Bolck-2 features under 50% Symmetric label nose
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(c) ResNet Bolck-3 features under 50% Symmetric label nose
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(d) ResNet Bolck-4 features under 50% Symmetric label nose

Figure 2: To evaluate the impact of Symmetric label noise on deep models with different frequency components extracted
from different CNNs layers, we train a ResNet-18 model on CIFAR-10 using original image, amplitude spectrum (detach
the gradients computing on phase spectrum), and phase spectrum (detach the gradients computing on phase spectrum) from
different ResNet blocks. The X-axis illustrates the training epochs. Figure 2a presents the training losses of detach AS
and PS components from the first ResNet block, indicated as “Detach AS” and “Detach PS” separately, and the “Original”
represents train the ResNet-18 without any manipulation in the frequency domain. Figure 2b, Figure 2c, and Figure 2d show
the corresponding training losses of the ResNet block 2, block 3 and block 4. The curves are based on five random runs.

ing the CIFAR-10 dataset, a well-established benchmark in
the field. Our evaluation metrics, which are crucial for un-
derstanding model performance, included test accuracy, la-
bel recall, and label precision. Our methodology was deeply
inspired by the approach detailed in PES [1].

Label recall, an essential metric, refers to the ratio of ex-
tracted confident samples with correct labels to the entire set
of correctly labeled samples. On the other hand, label preci-
sion, equally crucial, quantifies the ratio of confidently ex-

tracted samples with correct labels to all confident samples.
These metrics, when combined, provide a holistic view of
the model’s performance, ensuring both robustness and pre-
cision. For the experimental setup, we employed a state-of-
the-art neural network architecture based on ResNet-18. We
trained the networks 25 epochs. During this training phase,
the model was exposed to a diverse range of label noise,
simulating real-world scenarios and challenges. The point
is located between the 3rd and 4th ResNet blocks. Further-
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(a) ResNet Bolck-1 features under 40% Instance label nose
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(b) ResNet Bolck-2 features under 40% Instance label nose
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(c) ResNet Bolck-3 features under 40% Instance label nose
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(d) ResNet Bolck-4 features under 40% Instance label nose

Figure 3: To evaluate the impact of Instance label noise on deep models with different frequency components extracted
from different CNNs layers, we train a ResNet-18 model on CIFAR-10 using original image, amplitude spectrum (detach
the gradients computing on phase spectrum), and phase spectrum (detach the gradients computing on phase spectrum) from
different ResNet blocks. The X-axis illustrates the training epochs. Figure 3a presents the training losses of detach AS
and PS components from the first ResNet block, indicated as “Detach AS” and “Detach PS” separately, and the “Original”
represents train the ResNet-18 without any manipulation in the frequency domain. Figure 3b, Figure 3c, and Figure 3d show
the corresponding training losses of the ResNet block 2, block 3 and block 4. The curves are based on five runs.

more, the stopping points of ASχ and PSχ were set to 23
and 25, respectively. The results are presented in Table 2.

Upon analyzing the data in Table 2, it becomes evident
that our methods consistently outshine the conventional CE
and PES methods. This superiority suggests that our tech-
niques are adept at achieving higher accuracy and recall,
while also maintaining a commendable level of precision.
Such performance is indicative of our methods’ capability
to extract a larger volume of confident samples, a factor of

paramount importance for semi-supervised learning. In the
broader perspective, models boasting high recall values are
inherently advantageous as they can amass a wealth of con-
fident samples. This abundance benefits both supervised
and semi-supervised training regimes, invariably leading to
enhanced final classification outcomes. The empirical evi-
dence from our experiments robustly supports this conclu-
sion, highlighting the significance of our work.
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(a) ResNet Bolck-1 features under 45% Pairflip label nose
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(b) ResNet Bolck-2 features under 45% Pairflip label nose
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(c) ResNet Bolck-3 features under 45% Pairflip label nose
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(d) ResNet Bolck-4 features under 45% Pairflip label nose

Figure 4: To evaluate the impact of Pairflip label noise on deep models with different frequency components extracted from
different CNNs layers, we train a ResNet-18 model on CIFAR-10 using original image, amplitude spectrum (detach the
gradients computing on phase spectrum), and phase spectrum (detach the gradients computing on phase spectrum) from
different ResNet blocks. The X-axis illustrates the training epochs. Figure 4a presents the training losses of detach AS
and PS components from the first ResNet block, indicated as “Detach AS” and “Detach PS” separately, and the “Original”
represents train the ResNet-18 without any manipulation in the frequency domain. Figure 4b, Figure 4c, and Figure 4d show
the corresponding training losses of the ResNet block 2, block 3 and block 4. The curves are based on five random runs.

4. Training Details

In this section, we give more implementation details
about our experiments. We use three kinds of synthetic la-
bel noises for CIFAR-10 and CIFAR-100: symmetric class-
dependent label noise [18] (Symmetric), pairflip class-
dependent label noise [4] (Pairflip), and instance-dependent
label noise [19] (Instance). We follow the implementation
of ([4, 19, 1]) to generate these label noises with different

levels, which can be found in PES.

Data preprocessing For learning with confident samples
(Table 1 in the paper), we apply the random crop and ran-
dom horizontal flip as data augmentations. We further add
MixUp [20] data augmentation for semi-supervised settings
(Table 2 in the paper). For CIFAR-N dataset (Table 3 in
the paper), we use random crop, random horizontal, and a
CIFAR-10 augmentation policy from [13]. The input im-
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(a) Training loss on clean labels
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(b) Training loss on noisy labels
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(c) Test accuracy with noisy labels
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(d) Training loss on clean labels
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(e) Training loss on noisy labels
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(f) Test accuracy with noisy labels

Figure 5: To evaluate the impact of label noise on deep models with different image components, we train a ResNet-18
model on CIFAR-10 using original images, amplitude spectrum, and phase spectrum under clean and noisy labels. The
training losses on two kinds of labels (Figure 5a and Figure 5b 5e) and testing accuracy with the noisy labels (Figure 5c 5f)
are given. The X-axis illustrates the training epochs. Figure 5b 5c are based on the 45% Pairflip label noises and Figure 5e 5f
are based on the 40% Instance label noises. The curves are based on five random experiments, and the dotted vertical lines
indicate the best performance steps of different image components.

Table 2: Analysis of the performance and the quality of the confident samples extracted from CIFAR-10. Mean and standard
deviation over five runs are reported.

Metric Method Symmetric Pairflip Instance
20% 50% 45% 20% 40%

Test Accuracy

CE 82.55±2.46 70.76±1.24 60.62±5.59 84.41±0.90 74.73±2.65
PADDLES Base 84.73±0.65 74.34±2.06 63.68±1.59 85.63±1.16 76.70±3.60

PES 85.87±1.59 75.87±1.33 62.40±2.34 86.58±0.45 77.07±1.18
PADDLES 86.98±0.56 76.62±1.66 64.39±1.79 86.79±0.78 78.44±2.17

Label Recall

CE 88.51±2.26 75.18±1.00 67.84±5.06 90.37±1.01 82.15±3.17
PADDLES Base 91.48±0.88 79.18±2.25 70.14±3.34 91.99±0.89 84.02±4.87

PES 92.67±1.43 81.03±1.83 71.06±2.27 93.24±0.60 85.91±0.68
PADDLES 93.29±1.26 82.10±2.12 74.28±5.45 93.90±1.02 84.90±2.93

Label Precision

CE 98.81±0.15 94.65±0.19 72.53±5.26 98.70±0.43 90.77±1.87
PADDLES Base 98.83±0.08 95.01±0.27 72.97±3.01 98.52±0.26 89.83±2.73

PES 98.96±0.09 95.46±0.14 72.99±2.27 98.52±0.19 90.63±0.92
PADDLES 98.89±0.08 95.34±0.29 73.38±5.28 98.30±0.32 88.68±3.00

age size of CIFAR-like datasets is set as 32 × 32. For the
Clothing-1M dataset (Table 4 in the paper), we first resize

input images to the size of 256 × 256, then randomly crop
the image as 224× 224, and random horizontal flip last.



Hyper-parameters of PADDLES In learning with confi-
dent sample settings, we adopt ResNet-18 as the backbone
for CIFAR-10 and ResNet-34 for CIFAR-100. We set the
learning rate as 0.1, the weight decay as 10−4, the batch
size as 128, and the training epochs is 110. For PES train-
ing parameters, we use Adam optimizer, and set the PES
learning rate is 10−4, T2, T3 in [1] are 7 and 5 separately.
Different types and levels of label noises result in different
converge points of deep model on AS and PS. Therefore,
we set different stopping points of TA and TP for different
kinds and levels of label noises. For CIFAR-10, the TA for
20%/40% Instance noise, 45% Pairflip noise, and 20%/50%
Symmetric noise are [17, 20, 19, 18, 19]. The correspond-
ing TP are [13, 25, 16, 21, 20]. For CIFAR-100, the TA for
20%/40% Instance noise, 45% Pairflip noise, and 20%/50%
Symmetric noise are [20, 20, 19, 29, 20]. The correspond-
ing TP are [22, 22, 26, 11, 13]. The T0 in Algorithm 2 is set
as 0, and the training loss is the cross-entropy loss.

In semi-supervised learning, we adopt PreAct ResNet-
18 as the backbone. The learning rate is 0.02 with a SGD
optimizer, and we use cosine annealing learning rate sched-
uler to control the update of the learning rate. We set the
weight decay as 5 × 10−4, the batch size as 128, the train-
ing epochs as 500, and T2 in [1] as 5. We train the semi-
supervised models using MixMatch [2] loss with same pa-
rameters (λu, T,K) in [1]. Moreover, we set T0 in Algo-
rithm 2 as 0.

For CIFAR-N datasets, we use the ResNet-34 architec-
ture. We set the learning rate as 0.02, the batch size as 128,
the weight decay as 5 × 10−4, the training epochs as 300,
the T2 in PES as 5. We also employ the MixMatch loss to
train the semi-supervised model with MixMatch parameter
λu as 5 and 75 for CIFAR-10N and CIFAR-100N, respec-
tively. We set T0 in Algorithm 2 as 1, and we do observe
further performance improvement with a bigger T0 like 5 in
our CIFAR-N settings.

For Clothing-1M dataset, we employ the ResNet-50 as
the backbone, which is pre-trained on the ImageNet. We set
the batch size as 64, and the training epochs as 150. Dur-
ing training, we adopt the SGD optimizer with the learning
rate as 4.5× 10−3, the weight decay as 0.001, and the mo-
mentum as 0.9. We also use a three phase OneCycle [16]
scheduler to dynamic adjust the learning rate with the max
learning rate as 8.55×10−3. The corresponding PES learn-
ing rate is set as 5 × 10−6 and the T2 is 7. Moreover, the
training loss is the weighted cross-entropy loss, and T0 in
Algorithm 2 is as 0. More details will be found in our sched-
uled released codes.
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