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Supplementary Material

1. Implementation Details

In this section, we give more implementation details of
our Ponder model.

1.1. Pre-training Details

Network architecture. To process the extracted 3D fea-
ture volume, our approach utilizes a 3D U-Net. We adopt
the standard implementation of 3D U-Net, which consists
of four down-sampling stages with corresponding channels
of 32, 64, 128, and 256, respectively. All convolution layers
use a 3D kernel of size 3. To construct the neural rendering
decoders, Ponder employs a five-layer MLP network as the
SDF decoder and a three-layer MLP network as the RGB
decoder.

Figure 1. 3D U-Net architecture.

Figure 2. 3D feature
volume construction.

3D feature volume. Given a
point cloud X , we first discretize
the 3D space into a feature volume,
V , of resolution H × W × D. For
each voxel center in V , we then
apply average pooling to aggregate
features from surrounding points of
X . When there is no point near a
voxel due to the sparsity of X , that
voxel remains empty. The point

cloud X can be created from either single or multiple depth
frames.

In our experiments, we build a hierarchical feature vol-
ume V with a resolution of [16, 32, 64]. Building a 3D
hierarchical feature volume has been wildly used for recov-
ering detailed 3D geometry, e.g. [3, 2]. After processing
the 3D feature volume with a 3D CNN, we use trilinear in-
terpolation to get the feature of the query point p, which
is sampled along the casting ray and denoted as V(p). We
use the drop-in replacement of grid sampler from [10] to
accelerate the training.

Ray sampling strategy. Similar to [8, 11], we sample
twice for each rendering ray. First, we uniformly sample
coarse points between the near bound zn and far bound zf .
Then, we use importance sampling with the coarse proba-
bility estimation to sample fine points. Folowing [11], the
coarse probability is calculated based on Φh(s). By this
sampling strategy, our method can automatically determine
sample locations and can collect more points near the sur-
face, which makes the training process more efficient.

Back projection Here we give details of the back projec-
tion function π−1 to get point clouds from depth images.
Let K be camera intrinsic parameters, ξ = [R|t] be camera
extrinsic parameters, where R is the rotation matrix and t is
the translation matrix. Xuv is the projected point location
and Xw is the point location in the 3D world coordinate.
Then, according to the pinhole camera model:

sXuv = K(RXw + t), (1)

where s is the depth value. After expanding the Xuv and
Xw:
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The above Equation 3 is the back-projection equation π−1

used in this paper.



Training Time. The Ponder model is pre-trained with 8
NVIDIA A100 GPUs for 96 hours.

1.2. Transfer Learning Details

3D scene reconstruction. ConvONet [9] reconstructs
scene geometry from the point cloud input. It follows a
two-step manner, which first encodes the point cloud into a
3D feature volume or multiple feature planes, then decodes
the occupancy probability for each query point. To evaluate
the transfer learning capability of our point cloud encoder,
we conduct an experiment where we replace the point cloud
encoder of ConvONet directly with our pretrained encoder,
without any additional modifications. We choose the high-
est performing configuration of ConvONet as the baseline
setting, which uses a 3D feature volume with a resolution
of 64. For the training of ConvONet, we follow the same
training setting as the released code1.

Image synthesis from point clouds. Point-NeRF [12]
renders images from neural point cloud representation. It
first generates neural point clouds from multi-view images,
then uses point-based volume rendering to synthesize im-
ages. To transfer the learned network weight to the Point-
NeRF pipeline, we 1) replace the 2D image feature back-
bone with a pre-trained point cloud encoder to get the neural
point cloud features, 2) replace the color decoder by a pre-
trained color decoder, 3) keep the other Point-NeRF module
untouched. Since a large amount of point cloud is hard to
be directly processed by the point cloud encoder, we down-
sample the point cloud to 1%, which will decrease the ren-
dering quality but help reduce the GPU memory require-
ments. We report the PSNR results of the unmasked region
as the evaluation metric, which is directly adopted from the
original codebase2. For training Point-NeRF, we follow the
same setting as Point-NeRF.

2. Supplementary Experiments
2.1. Transfer Learning

Label Efficiency Training. We also do experiments to
show the performance of our method with limited label-
ing for the downstream task. Specifically, we test the la-
bel efficiency training on the 3D object detection task for
ScanNet. Following the same setting with IAE[13], we use
20%, 40%, 60%, and 80% of ground truth annotations. The
results are shown in Figure 3. We show constantly im-
proved results over training from scratch, especially when
only 20% of the data is available.

Color information for downstream tasks. Different
from previous works, since our pre-training model uses a

1https://github.com/autonomousvision/convolutional occupancy networks
2https://github.com/Xharlie/pointnerf

Figure 3. Label efficiency training. We show the 3d object de-
tection experiment results using limited downstream data. Our
pretrained model is capable of achieving better performance than
training from scratch using the same percentage of data or requires
fewer data to get the same detection accuracy.

colored point cloud as the input, we also use color informa-
tion for the downstream tasks. Results are shown in Table
2. Using color as an additional point feature can help the
VoteNet baseline achieve better performance on the SUN
RGB-D dataset, but get little improvement on the ScanNet
dataset. This shows that directly concatenating point posi-
tions and colors as point features shows limited robustness
to application scenarios. By leveraging the proposed Pon-
der pre-training method, the network is well initialized to
handle the point position and color features, and achieve
better detection accuracy.

Losses AP50 ↑ AP25 ↑
L 41.0 63.6

- Lc 40.9 64.2
- Ld 40.5 63.4
- Le 40.9 63.3

- Le - Lf 40.7 63.1
- Le - Lf - Ls 40.5 63.2

Table 1. Ablation study for
loss terms 3D detection AP25

and AP50 on ScanNet.

Ablation study of different
loss terms. The ablation
study of different loss terms
is shown in Tab. 1, which
demonstrates the effective-
ness of each loss term.

More comparisons on 3D
detection. More detection
accuracy comparisons are given in Table 2. Even using an
inferior backbone, our Ponder model is able to achieve sim-
ilar detection accuracy with 2 in ScanNet and better accu-
racy in SUN RGB-D.

3D semantic segmentation with point-based approaches.
Tab. 3 shows our additional experiments with the point-
based approach Ponder+DGCNN.

Ablation study of different pre-training epochs. Tab. 4
shows that longer pre-training epochs lead to better perfor-
mance in downstream tasks.



Method Detection Pre-training Pre-training Pre-training ScanNet SUN RGB-D
Model Type Data Epochs AP50 ↑ AP25 ↑ AP50 ↑ AP25 ↑

VoteNet* VoteNet* - - - 37.6 60.0 33.3 58.4
DPCo[6] VoteNet* Contrast Depth 120 41.5 64.2 35.6 59.8
IPCo[6] VoteNet* Contrast Color & Depth 120 40.9 63.9 35.5 60.2

VoteNet (w color) VoteNet - - - 33.4 58.8 34.3 58.3
Ponder VoteNet Rendering Depth 100 40.9 64.2 36.1 60.3
Ponder VoteNet Rendering Color & Depth 100 41.0 63.6 36.6 61.0

Table 2. 3D object detection AP25 and AP50 on ScanNet and SUN RGB-D. * means a different but stronger version of VoteNet.

Method OA↑ mIoU↑
DGCNN 84.1 56.1
Jigsaw 84.4 56.6
OcCo 85.1 58.5
IAE 85.9 60.7

Ponder 86.2 61.1

Table 3. 3D semantic segmen-
tation OA and mIoU on S3DIS
dataset with DGCNN model.

Epochs AP50 ↑ AP25 ↑
20 38.7 62.0
40 39.4 62.8
60 40.0 62.7
80 40.4 63.1
100 41.0 63.6

Table 4. Ablation study
for pre-training epochs.
3D detection AP25 and
AP50 on ScanNet.

2.2. More qualitative examples

As mentioned in the paper, the pre-trained Ponder model
can be directly used for surface reconstruction and image
synthesis tasks. We give more application examples in Fig-
ure 4 and Figure 5. The results show that even though the in-
put is sparse point clouds from complex scenes, our method
is able to recover high-fidelity meshes and recover realistic
color and depth images.

3. Multi-Camera 3D Object Detection
To further verify the effect of utilizing rendering in self-

supervised learning, we conduct exploratory experiments
on the multi-camera 3D object detection task, which em-
ploys multiview images as input data.

3.1. Experimental Setup

Dataset. The nuScenes dataset [1] is a popular benchmark
for autonomous driving that includes data collected from six
cameras, one LiDAR, and five radars. With 1000 scenarios,
the dataset is split into three sets of 700, 150, and 150 scenes
for training, validation, and testing, respectively. The eval-
uation metrics used for 3D object detection in the nuScenes
dataset incorporate the commonly used mean average pre-
cision (mAP) and a novel nuScenes detection score (NDS).

Implementation Details. For the downstream task, we
adopt the latest state-of-the-art method, i.e., UVTR [7], as
our baseline. Specifically, we use ResNet50-DCN [5, 4]
as the image backbone, which is initialized with the pre-
trained weights (i.e., the weights of ResNet-50 Caffe model)

from MMDetection3. To construct the 3D feature volume,
we first project predefined 3D voxels to multi-view images
through transformation matrices. Then, the voxel features
are interpolated from the image features via the projected
pixel locations. The resolution of the predefined 3D vol-
ume is [128, 128, 5]. The model is trained with the AdamW
optimizer with an initial learning rate of 2e−4 for 24 epochs.

For pre-training, our model shares a similar architecture
as the baseline, except that the point cloud is additionally
used to supervise the rendered depth. As our goal is to pre-
train the 2D backbone, the point cloud is not used as input
to construct the 3D feature volume, which is different from
the process of Ponder in the main text.

3.2. Main Results

Method mAP↑ NDS↑
UVTR[7] 28.69 35.79

Ours 30.10 (+1.41) 36.31 (+0.52)

Table 5. Performance comparisons on the nuScenes val set.

The Effect of Pre-training. Table 5 shows that our
method could yield up to 1.41% mAP and 0.52% NDS gains
compared with the baseline, demonstrating the effective-
ness of our pre-training method. The consistent improve-
ment in both indoor and outdoor scenarios validates the ro-
bustness of our approach.

Visualization. Figure 6 provides some qualitative results
of the reconstructed image and depth map, which only takes
the image as input during inference. Our approach has the
capability to estimate the depth of small objects, such as
cars at a distance. This quality in the pre-training process
encodes intricate and continuous geometric representations,
which can benefit many downstream tasks. In Figure 7,
we present 3D detection results in camera space and BEV
(Bird’s Eye View) space. Our model can predict accurate
bounding boxes for nearby objects and also shows the capa-
bility of detecting objects from far distances.

3https://github.com/open-mmlab/mmdetection
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Figure 4. More results of application examples of Ponder on the ScanNet validation set (part 1). The input point clouds are represented
by large spheres for improved clarity. The projected point clouds illustrate the actual sparsity of the point data.
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Figure 5. More results of application examples of Ponder on the ScanNet validation set (part 2). The input point clouds are represented
by large spheres for improved clarity. The projected point clouds illustrate the actual sparsity of the point data.
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Figure 6. The predicted image and depth map on the nuScenes dataset. Left to right: image and projected point clouds, image predictions,
and depth predictions.

Figure 7. Qualitative results of multi-camera 3D object detection on the nuScenes dataset. We visualize the point cloud to better evaluate
the quality of predicted bounding boxes.
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