
Reconstructing Groups of People with Hypergraph Relational Reasoning
—Supplementary Material—

Buzhen Huang1 Jingyi Ju1 Zhihao Li2 Yangang Wang1*

1Southeast University, China
2Huawei Noah’s Ark Lab

R
G

B
O

v
er

la
y

D
if

fe
re

n
t 

V
ie

w

1210.2298 mm

Figure 1: Our method can produce accurate body meshes with reasonable spatial positions from monocular large-scale
images.

1. Introduction

In the supplementary material, we first provide the
schematic, pseudocode, and more details to help the readers
to understand the hypergraph relational reasoning (Sec. 2).
Then, we introduce the procedures to produce pseudo
ground-truth (Sec. 3). The implementation details (Sec. 4)
and training data (Sec. 6) are also described to help the re-
production of the experimental results. Finally, more com-
parisons, analyses, and qualitative experiments are con-
ducted to further demonstrate the superiority of the pro-
posed method (Sec. 7).

2. Relational reasoning

We provide a schematic (Fig. 2) and pseudocode (Algo-
rithm 1) of the relational reasoning to promote the readers
to understand the procedures. To form the hypergraphs, we
first initialize all nodes with the extracted individual fea-
tures. Then, the human features are used to calculate the
affinity map for inferring hyperedges. Since the human
groups are unordered structures, which cannot be defined
in advance, we employ a greedy algorithm approximation
to predict the connection relationships of hyperedges in dif-
ferent scales. Specifically, we first select a node vi and then
add new nodes that have maximum affinity values with vi.
The nodes on the same hyperedge will be regarded as a
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Figure 2: Schematic of the relational reasoning. We initialize the nodes and infer the hyperedges with the extracted individual
features. After the hypergraphs are formed, we conduct node-to-hyperedge and hyperedge-to-node phases to achieve the
relational reasoning.

group. After the hypergraphs are formed, we conduct node-
to-hyperedge and hyperedge-to-node phases to achieve the
relational reasoning. As shown in the Fig. 2, the node fea-
tures are first aggregated to hyperedges. Then, we update
the node features with all associated hyperedges. The two
phases are executed for several iterations. Finally, the up-
dated node features are output for the regression. The exe-
cution steps can be found in Algorithm 1.

3. Pseudo ground-truth annotator
In this section, we introduce the detailed procedures of

our pseudo ground-truth annotator. The procedures are sim-
ilar to EFT [8], which adapts 3D human models to ground-
truth 2D poses with a strong pose prior. The critical dif-
ference between our annotator and EFT is that we consider
the multi-person relationships and constraints. Thus, our
annotator can obtain more reasonable spatial distributions
and ordinal relationships. Specifically, we first train our
model on common crowd data. Due to the domain gap be-
tween common and large-scale scenarios, the network may
not predict accurate results when applied to large images.
Thus, we finetune the network parameters on each image
with the following constraints:

Lpseudo = Lreproj + Lcrowd + Ldepth + Lprior. (1)

Lreproj and Lcrowd are the same as main manuscript. A depth
ordering-aware loss [6] is also used to ensure the correct
ordinal relations for close people.

Ldepth =
∑
u∈S

log
(
1 + exp

(
Dy(u)(u)−Dŷ(u)(u)

))
. (2)

The loss function penalizes inconsistent depth ordering as-
sisted by a differentiable depth renderer [9]. y(u) and ŷ(u)

are ground-truth and predicted person index at pixel loca-
tion u. Dy(u)(u) is the depth value at u for y(u)th per-
son, and S is the set of pixels that have conflicting depth
ordering. To query ground-truth depth value, we predict
the instance segmentation with Pose2seg [22]. More details
can refer to [6]. Since this constraint has low efficiency for
crowd images, we only apply it in the pseudo-ground truth
annotator and do not use it in the network training.

A regularization term is also used to prevent overfitting:

Lprior =
1

N

N∑
n=1

∥[βn, θn]− [ ˆβn
init,

ˆθninit]∥
2
2, (3)

where βinit and θinit are initial values of the first predic-
tion. We optimize the network parameters for several iter-
ations based on the above constraints and finally output the
estimated results as the pseudo ground-truth.

4. Implementation details
We implement the network with PyTorch [17]. The

backbone network is a ResNet-50 [4], which encodes the
human image patch to a feature vector. We pretrain the
backbone network with a single-person mesh recovery task,
and then use it to form the overall framework. To consider
both common and crowded scenes, the relational reasoning
network is designed to have 11 nodes. When the number
of people in the image is less than the number of nodes,
we fill the empty node with 0 and mask it in the relational
reasoning. For the images with known camera parame-
ters, we use the ground-truth focal length in the training
and inference; otherwise, we use an approximate value of√
w2 + h2, where w and h are the width and height of the

image. The network is trained on a desktop with an Intel(R)
Core(TM) i9-11900F CPU and a GPU of NVIDIA GeForce
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Figure 3: Comparison with BEV [19] and CRMH [6]. Our method regresses human meshes with more accurate spatial
positions.

RTX 3090, using the AdamW optimizer [14] with a learn-
ing rate of 1e-4 and a batch size of 32. To obtain pseudo
ground-truth annotations, we run 260 iterations to adapt the
pretrained model to in-the-wild images with a learning rate
of 1e-5.

5. Metrics
We describe the details of the metrics used in large-scale

scenes. The Procrustes-aligned pair-wise percentual dis-

tance similarity (PA-PPDS) [1] measures the location dis-
tribution of the crowd after applying a Procrustes Analysis
between the estimated crowd and the real crowd.

PA− PPDS =

∑N−1
k=1

∑N
i=k+1 1−min (dik, 1)

C2
N

,

dik =

∣∣∣∣∥Ek − Ei∥ − ∥Gk −Gi∥
∥Gk −Gi∥

∣∣∣∣ ,
(4)



Testing set Panoptic GigaCrowd JTA

Training set

Human3.6M
MuCo-3DHP
MSCOCO
MPII
CrowdPose

Human3.6M
MuCo-3DHP
MSCOCO
MPII
CrowdPose
Panda

JTA

Table 1: The benchmarks and corresponding training data.
where N is the number of people in the image, and Ei and
Gi represent the estimated and ground-truth locations of the
ith person, respectively. Since a low detection threshold
may result in redundant reconstruction, a redundant punish-
ment (RP) [1] is also used to evaluate the redundancy.

RP = min

(
1,max

(
Npred

Ngt
− tre, 0

))
(5)

where Npred Ngt are the number of persons in the predic-
tion and ground truth, respectively. tre = 1.02 is a thresh-
old.

6. Dataset
Panda [20] is the first giga-pixel level video dataset cap-

tured in real-world scenarios. This dataset contains crowded
scenes with a large field of view and high-resolution de-
tails. However, only the bounding-boxes in this dataset are
available. We annotate the ground-truth 2D poses according
to the bounding-boxes. Based on the 2D poses, we further
build pseudo ground-truth 3D crowd for this dataset and use
the generated annotations to train our model.

GigaCrowd [1] is a giga-pixel level image dataset,
which captures several large-scale crowded scenarios in the
real world. Since it is a dataset for a competition, only the
ground-truth 3D root positions and 2D poses in its training
set are publicly available. Thus, we conduct quantitative
comparisons on its training set. In addition, the testing set
is also used to conduct the qualitative experiments.

JTA [3] is a synthetic dataset for human pose estimation
in large urban scenarios, which is collected from the real-
istic video-game the Grand Theft Auto V. Since the dataset
only has 3D joint position annotations, we fit the SMPL
model to the 3D poses to get human meshes for training.
The evaluation is conducted on the standard testing set to
demonstrate the effectiveness of our model in large-scale
crowded scenes.

Panoptic [7] has several people captured in a controlled
scene, which is used for evaluation only. This dataset is
challenging in terms of complex interactions and difficult
camera viewpoints. We follow the protocol used in [21] to
evaluate our model.

Human3.6M [5] is a single-person indoor dataset that
contains 11 professional actors in 17 scenarios. We follow
the previous work [19] to use the subjects S1, S5, S6, S7
and S8 with Mosh [13] annotations for training.

Iterations 1 2 3 4 5
MPJPE 106.9 106.7 106.6 106.8 107.0

Table 2: Ablation on the number of iterations on Panoptic.
Different iterations achieve very similar performance.

Individual Transformer hypergraph-(1) hypergraph-(1,3,5)
129.2 112.8 113.4 106.6

Table 3: Ablation studies on Panoptic dataset. ”Indi-
vidual” removes the relational reasoning. ”Transformer”
uses a transformer-based network for relational reasoning.
”(1,3,5)” means 3 scales with group sizes of 1, 3, and 5. The
numbers are MPJPE.

MuCo-3DHP [15] is a synthetic multi-person 3D
dataset. It composites images of single-person with 3D pose
ground truth from the existing MPI-INF-3DHP dataset. We
use the same version with 3DMPPE [16] for training.

MSCOCO [12], MPII [2], CrowdPose [10] are in-the-
wild 2D pose datasets. We use pseudo ground-truth from
[11] and our work for the training.

MuPoTS [15] contains ground-truth 3D poses for up to
3 subjects. It is captured with a multi-view markerless sys-
tem. We use it to conduct qualitative comparisons.

AGORA [18] is a synthetic multi-person dataset with
absolute human mesh annotations. It uses textured human
scans in diverse poses and clothes to build the dataset. Each
image has 5-15 people with various occlusions. We use
AGORA to evaluate the method on occlusion cases.

7. Extended experiments
7.1. Qualitative comparison to SOTA methods

In Fig. 3, we further conduct several comparisons to
SOTA multi-person mesh recovery methods on Internet im-
ages in common scenes. In Fig. 3 (b), we found that BEV
cannot recover people in the distance due to the scale vari-
ations. Although BEV and CRMH can produce plausi-
ble results in the camera perspective, their spatial positions
may be incorrect. In contrast, our method can regress ac-
curate meshes with reasonable spatial distribution with the
relational reasoning and crowd constraints. In addition,
3DCrowdNet and ROMP are recent works that do not gen-
erate absolute positions. We also compared our method
with these baseline methods in Fig. 4. The results on Panop-
tic, MuPoTS, JTA, and AGORA datasets show that our
method is more robust to scale variations, mutual occlu-
sions, and truncations. We further show more results on
GigaCrowd dataset in Fig. 1. Our method works well on
extremely large scenes with crowded people.

7.2. Collectiveness

We visualize the human feature affinity mapsA in Fig. 6
for correlated and unrelated groups. Based on the human
correlations, we apply an optimization in the group infer-
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Figure 4: Comparison with CRMH, BEV, 3DCrowdNet, and ROMP on Panoptic, MuPoTS, JTA, and AGORA. Our method
is more robust to scale variations and mutual occlusions.

Collectiveness: 0.92 Collectiveness: 0.76 Collectiveness: 0.54 Collectiveness: 0.49 OverlayRGB

Figure 5: Visualization of different groups. The group with higher pose similarity produces a higher collectiveness factor.

ence stage to form the groups for the relational reasoning.
The adjacency matrices, H(1) and H(2), show that the peo-
ple with a high pose similarity are assigned to the same

group. We also show the formed groups in Fig. 5. The
yellow lines denote the generated groups with a size of 5.
Thus, the group information can be exploited to improve the
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Figure 6: We show the affinity mapsA and adjacency matricesH(s) for correlated (column 1 and 2) and unrelated groups (col-
umn 3 and 4). The color in A andH(s) means the correlation and collectiveness factor, respectively.

reconstruction for each individual. In addition, we calculate
the effectiveness factor in the node-to-hyperedge phase and
demonstrate that the group with higher pose similarity can
lead to a higher effectiveness factor. With the group fea-
tures, our model can regress more accurate body meshes
and precise ordinal relationships.

7.3. The impact of iterations

In Tab. 2, we study the effect of different iteration num-
bers on the reconstruction performance. The experiment is
conducted on Panoptic. The results show that the number of
iterations has a slight effect on the estimation, and a moder-
ate iteration number achieves the best results.

7.4. Extended ablations on Panoptic

Since GigaCrowd does not contain 3D pose annotations,
we further investigate the effectiveness of our method on
Panoptic by measuring the reconstructed 3D joint positions
in Tab. 3. Panoptic has collective motions and complex mu-
tual occlusions, which is also a useful tool to validate our
design. The results show that group features are essential in
this situation. We can reconstruct more accurate 3D poses
with the relational reasoning.

7.5. Failure cases

We also show some failure cases in Fig. 7 to further dis-
cuss the limitations. Since the framework still adopts a
top-down strategy, the strongly ambiguous pixel-level im-
age features may confuse the network prediction. For se-
vere mutual occlusions, our method cannot produce plausi-
ble results. The problem could be solved by incorporating
2D semantics or pose prior knowledge. Our method also
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Figure 7: Failure cases. Our method still cannot address
severe pixel-level ambiguities. In addition, in cases where
people are in different planes, a too-large crowd loss weight
may result in wrong absolute positions.

cannot estimate accurate 3D models for kids. Directly using
SMPL to represent kids may produce strange body shapes
and wrong spatial positions. Besides, the current crowd
constraint is not generalized for all scenarios. As shown
in the auditorium case in Fig. 7, although the overlay image
seems correct, the distances of people in different rows are
large. It is induced by a too-large crowd loss weight, and all
people are dragged to the same plane. Future works could
integrate the scene semantics to address this limitation.



Algorithm 1 Pseudocode of hypergraph relational reasoning.

Input: individual features V = {v1, v2, · · · , vN}; number of iterations T ; number of scales S; group size K
Output: updated individual features V ′ = {v′1, v′2, · · · , v′N}

1: initialize output features D = {}
2: calculate affinity map A
3: for s = 1 to S do
4: initialize node V(s) = V
5: infer adjacency matrixH(s) with A and K(s)

6: node-to-hyperedge phase E(s) = MLP (V(s),H(s))
7: for i = 1 to T − 1 do
8: hyperedge-to-node phase V(s) = MLP (V(s), E(s),H(s))
9: node-to-hyperedge phase E(s) = MLP (V(s),H(s))

10: i = i+ 1
11: end for
12: hyperedge-to-node phase V(s)′ = MLP (V(s), E(s),H(s))
13: collect features at scale s D ← V(s)′

14: s = s+ 1
15: end for
16: get updated individual features V ′ ← D
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