
8. Appendix

8.1. Classification and Interpretation Robustness

Suppose the gradient based interpretation can be written
as gpxq “ ∇ℓpxq, where ℓ can be the cross-entropy loss (or
our defined prediction loss J). We leverage Lipschitz con-
tinuous gradient to hint the relation between classification
robustness and interpretation robustness as what follows.

A differentiable function ℓpxq is called smooth within lo-
cal region Bpx, rq iff it has a Lipschitz continuous gradient,
i.e., if DK ą 0 such that

||∇ℓpx1q ´ ∇ℓpxq|| ď K||x1 ´ x||, @x1 P Bpx, rq. (17)

Proposition 1 Lipschitz continuous gradient implies:

||ℓpx1q ´ ℓpxq|| ď ||∇ℓpxq||r `
K

2
r2 (18)

Prop. 1 says, the change of classification is bounded by in-
put gradient ||∇ℓpxq||, as well as K

2 . K can be chosen as the
Frobenius norm of input hessian ||H||F pxq [16]. Therefore,
the regularisation of input gradient and input hessian can af-
fect classification robustness and interpretation robustness.

Proof. We first show that for K ą 0, ||∇ℓpx1q ´

∇ℓpx2q|| ď K||x1 ´ x2|| implies

ℓpx1q ´ ℓpx2q ď ∇ℓpx2qT px1 ´ x2q `
K

2
||x1 ´ x2||2

Recall from the integral calculus ℓpaq´ℓpbq “
şa

b
∇ℓpθq dθ,

ℓpx1q ´ ℓpx2q “
ż 1

0

∇ℓpx2 ` τpx1 ´ x2qqT px1 ´ x2q dτ “

ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT ` ∇ℓpx2qT q

px1 ´ x2q dτ

As ∇ℓpx2q is independent of τ , it can be taken out from the
integral

ℓpx1q ´ ℓpx2q “ ∇ℓpx2qT px1 ´ x2q`
ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q dτ

Then we move ∇ℓpx2qT px1 ´ x2q to the left and get the
absolute value

|ℓpx1q ´ ℓpx2q ´ ∇ℓpx2qT px1 ´ x2q| “

|

ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q dτ | ď

ż 1

0

|p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q| dτ ďc.s.

ż 1

0

||p∇ℓpx2 ` τpx1 ´ x2qq ´ ∇ℓpx2qq||||px1 ´ x2q|| dτ

c.s. means Cauchy – Schwarz inequality. By applying lips-
chitz continuous gradient, we can get

||p∇ℓpx2 ` τpx1 ´ x2qq ´ ∇ℓpx2qq||

ď K||τpx1 ´ x2q||

ď Kτ ||x1 ´ x2||

Note τ ě 0, and the absolute sign of τ can be removed.
Then, we can get

|ℓpx1q ´ ℓpx2q ´ ∇ℓpx2qT px1 ´ x2q| ď
ż 1

0

Kτ ||x1 ´ x2||2 dτ “
K

2
||x1 ´ x2||2

Next, get the norm of two sides, and apply triangle inequal-
ity, we finally get

||ℓpx1q ´ ℓpxq|| ď ||∇ℓpxqT px1 ´ xq `
K

2
||x1 ´ x||2||

ď ||∇ℓpxq||||x1 ´ x|| `
K

2
||x1 ´ x||2

ď ||∇ℓpxq||r `
K

2
r2

(19)

QED

8.2. Genetic Algorithm based Optimisation

Genetic Algorithm (GA) is a classic evolutionary algo-
rithm for solving the either constrained or unconstrained
optimisation problems. It mimics the biological evolution
by selecting the most fitted individuals in the population,
which will be the parents for the next generation. It consists
of 4 steps: initialisation, selection, crossover, and mutation,
the last three of which are repeated until the convergence of
fitness values.

Initialisation The initialisation of population is crucial to
the quick convergence. Diversity of initial population could
promise approximate global optimal[27]. Normally, we use
the Gaussian distribution with the mean at input seed x, or
a uniform distribution to generate a set of diverse perturbed
inputs within the norm ball Bpx, rq.



Selection A fitness function is defined to select fitted in-
dividuals as parents for the latter operations. We use the
fitness proportionate selection [28].

pi “
Fi

řn
i“1 Fi

(20)

The fitness value is used to associate a probability of se-
lection pi for each individuals to maintaining good diver-
sity of population and avoid premature convergence. The
fitness function is the objective function to be optimised.
For example, previous paper applies GA to the perturbation
optimisation to generate the high quality AEs [13]. In this
paper, the explanation discrepancy is optimised to find the
worst case adversarial explanations.

Figure 5: Illustration of crossover and mutation in GA

Crossover The crossover operator will combine a pair of
parents from last step to generate a pair of children, which
share many of the characteristics from the parents. The half
elements of parents are randomly exchanged.

Mutation Some elements of children are randomly al-
tered to add variance in the evolution. It should be noticed
that the mutated samples should still fall into the norm ball
Bpx, rq. Finally, the children and parents will be the indi-
viduals for the next generation.

Termination The termination condition of GA is either
maximum number of iterations is reached or the highest

ranking of fitness reaches a plateau such that successive it-
erations no longer produce better results. In this paper, we
fix the maximum iteration number for simplicity.

GA can be directly applied to the unconstrained optimi-
sation when objective function equals to fitness function.
The constraint optimisation is more challenging and dif-
ferent strategies are proposed to handle the non-linear con-
straint for GA [30]. One of the popular approaches is based
on the superiority of feasible individuals to make distinction
between feasible and infeasible solutions [34].

8.3. Subset Simulation

Subset Simulation (SS) is widely used in reliability engi-
neering to compute the small failure probability. The main
idea of SS is introducing intermediate failure events so that
the failure probability can be expressed as the product of
larger conditional failure probabilities [6].

Suppose the distribution of perturbed inputs with the
norm ball is qpxq, and the failure event is denoted as F .
let F “ Fm Ă Fm´1 Ă ¨ ¨ ¨ Ă F2 Ă F1 be a sequence of
increasing events so that Fm “

Şm
i“1 Fi. By the definition

of conditional probability, we get

PF “ P pFmq “ P p

m
č

i“1

Fiq

“ P pFm|

m´1
č

i“1

FiqP p

m´1
č

i“1

Fiq

“ P pFm|Fm´1qP p

m´1
č

i“1

Fiq

“ P pFm|Fm´1q ¨ ¨ ¨P pF2|F1qP pF1q

“ P pF1q

m
ź

i“2

P pFi|Fi´1q

(21)

Fm is usually a rare event, which means a large amount
of samples are required for the precise estimation by Sim-
ple Monte Carlo (SMC). SS decomposes the rare event
with a series of intermediate events, which are more fre-
quent. The conditional probabilities of intermediate events
involved in Eq. (11) can be chosen sufficiently large so that
they can be efficiently estimated. For example, P pF1q “ 1,
P pFi|Fi´1q “ 0.1, i “ 2, 3, 4, 5, 6, then PF « 10´5 is too
small for the efficient estimation by SMC.

The keypoint of SS is estimating P pF1q and conditional
probabilities P pFi|Fi´1q. On the one hand, F1 can be cho-
sen as the common event such that by SMC of N perturbed
inputs within the norm ball x1

k „ qpx1q, all samples fall into
F1. On the other hand, computing the conditional probabil-
ity

P pFi`1|Fiq “
1

N

N
ÿ

k“1

1Fi`1
px1

kq « ρ (22)



requires the simulation of p1´ρqN additional samples. For
example, if we have N samples belonging to Fi´1 with
i ě 2, and P pFi|Fi´1q “ ρ, which indicate ρN sam-
ples belongs to Fi. To estimate next conditional probability
P pFi`1|Fiq, p1´ρqN additional samples lying in Fi should
be simulated to expand the population size to N . Given the
conditional distribution qpx1|Fiq “ qpx1qIF1px1q{P pFiq, on
average 1{P pFiq samples are simulated before one such
sample occur. The Markov Chain Monte Carlo based on
Metropolis-Hastings (MH) algorithm can be adopted to im-
prove the efficiency.

At intermediate iteration i, we already obtain ρN sam-
ples lying in Fi, that is x1 P Fi. The target distribution is
qp¨|Fiq. We can use MH algorithm to generate new samples
x2 from the proposal distribution gpx2|x1q. gpx2|x1q can
be normal distribution or uniform distribution centred at x1.
The MH algorithm can be written as below:

8.3.1 Initialisation

Pick up a sample x1 belonging to Fi. Set step t “ 0 and let
xt “ x1.

8.3.2 Iteration

At step t, generate a random candidate sample x2 according
to gpx2|xtq. Calculate the acceptance probability

Apx2, xtq “ mint1,
qpxt|Fiq

qpx2|Fiq

gpxt|x
2q

gpx2|xtq
u (23)

and accept the new sample x2 with probability Apx2, xtq.
Further check if x2 P Fi, otherwise reject x2. In practice,
we generate a uniform random number u P r0, 1s, set xt`1

as

xt`1 “

#

x2 if u ď Apx2, xtq and x2 P Fi

xt Otherwise
(24)

and increment t “ t ` 1.
We can run a large amount of Markov chains simulta-

neously to enlarge the set of i.i.d. samples falling into Fi.
However, as discussed in [24, 36], MH becomes inefficient
for high dimensional problems. The acceptance probabil-
ity Apx2, x1q will rapidly decrease with increasing dimen-
sions. It results in many repeated samples and high corre-
lated Markov chains. It is recommended to adapt the pro-
posal distribution gpx2|x1q after M steps of MH [33]. The
mean acceptance probability should be kept around 0.234
[18].

The whole process of SS can be summarized as follows.
First, we simulate N perturbed samples within the norm
ball Bpx, rq (all belong to F1) and use SMC to estimate
P pF2|F1q. From these N samples, we already obtain ρN

samples distributed from qp¨|F2q. Start from each of these
ρN samples falling in F2, we can create a Markov chain
and run MH M steps to generate new samples distributed
from qp¨|F2q. In initial SS method [6], ρN distinct Markov
chains (with different start points) are created. 1{ρ new
samples are drawn from each chain, and the covariance be-
tween new samples in same Markov chain should be consid-
ered for evaluating the coefficient of variation (c.o.v) of the
final estimation on PF . [11] modify the algorithm by firstly
enlarge set to N samples with replacement from ρN . Then
N Markov Chains are constructed and only one sample is
drawn from each chain.

These new generated samples can be utilised to estimate
P pF3|F2q. Repeating this process until the rare failure of
interest. We get the final estimation of failure event prob-
ability by “assembling” the conditional probabilities with
Eq. (11).

8.3.3 Statistical Property of SS Estimator

We present the analysis on statistical property of PFi (short-
ened notation for P pF1q and P pFi|Fi´1q) and PF . They
are based on the assumption that Markov chain generated
by MH algorithm is theoretically ergodic. That is, the sta-
tionary distribution is unique and tend to the corresponding
conditional probability distribution. Since we simulate sam-
ples from Markov chain to estimate PFi (ref. to Eq. (22)),
The coefficient of variation of PFi (c.o.v) is

δi “

d

1 ´ PFi

PFi
N

p1 ` λiq (25)

λi ą 0 represents the dependency of samples drawn
from Markov Chain. This is compared to case when we use
SMC to simulate independent samples from the known dis-
tribution (λi “ 0). As N Ñ 8, the Central Limit Theorem
(CLT) tells sPF1 Ñ P pF1q, and sPFi Ñ P pFi|Fi´1q. We can
get almost surely sPF Ñ P pF1q

śm
i“2 P pFi|Fi´1q “ PF . It

should be noted that sPF is biased for N , but asymptotically
unbiased due to the fact that samples in Fi for computing
sPFi

are utilised to start Markov chain for computing sPFi`1
.

This bias will asymptotically vanish when N goes to infin-
ity.

Proposition 2 sPF is biased for N , the fractional bias is
bounded by:

|E

„

sPF ´ PF

PF

ȷ

| ď
ÿ

iąj

δiδj ` op1{Nq “ Op1{Nq (26)

Proof. We define Zi “ p sPFi ´ PFiq{σi, and get sPFi “

PFi
`σiZi. By CLT, it’s clear that ErZis “ 0 and ErZ2

i s “



1.

sPF ´ PF

PF
“

m
ź

i“1

sPFi
{PFi

´ 1

“

m
ź

i“1

p1 ` δiZiq ´ 1

“

m
ź

i“1

δiZi `

m
ÿ

i“1

δiZi `
ÿ

iąj

δiδjZiZj`

ÿ

iąjąk

δiδjδkZiZjZk ` ...

Take expectation and use ErZis “ 0, we can further get

E

„

sPF ´ PF

PF

ȷ

“

˜

m
ź

i“1

δi

¸

E

«

m
ź

i“1

Zi

ff

`
ÿ

iąj

δiδjErZiZjs

`
ÿ

iąjąk

δiδjδkErZiZjZks ` ...

Since tZiu are correlated, ErZiZjs, ErZiZjZks,.... are not
zero, and sPFi is biased for every N . δi is Op1{

?
Nq ac-

cording to the definition, which makes
ř

iąj δiδjErZiZjs

have Op1{Nq and remaining items with higher product of
δi have op1{Nq. Take absolute value of both sides and
use Cauchy-Schwartz inequality to obtain |ErZiZjs| ď
b

ErZ2
i sErZ2

j s “ 1. Finally, we can get the proof.

Proposition 3 sPF is a consistent estimator and its c.o.v. δ
is bounded by:

δ2 “ E

„

sPF ´ PF

PF

ȷ2

ď
ÿ

i,j“1

δiδj ` op1{Nq “ Op1{Nq

(27)

Proof.

E

„

sPF ´ PF

PF

ȷ2

“ E

«

m
ź

i“1

δiZi `

m
ÿ

i“1

δiZi `
ÿ

iąj

δiδjZiZj ` ...

ff2

“

m
ÿ

i,j“1

δiδjErZiZjs ` op1{Nq

ď

m
ÿ

i,j“1

δiδj ` op1{Nq “ Op1{Nq

As δi “ Op1{
?
Nq and ErZiZjs ď 1. Note that the bias

is accounted for when c.o.v. δ is defined as the deviation
about PF , instead of Er sPF s. The upper bound corresponds
to the case that conditional probability tPFiu are all corre-
lated. Although tPFi

u are generally correlated, δ can be

well approximated by
řm

i“1 δ
2
i . For simplicity, we can also

make the assumption that enough steps of MH algorithm
are taken to eliminate the dependency of simulated samples
from MCMC (λi “ 0) [11]. Then we use sample mean sPFi

to approximate PFi
, and finally get

sδ2 «

m
ÿ

i“1

δ2i “

m
ÿ

i“1

1 ´ sPFi

sPFi
N

p1 ` λiq «

m
ÿ

i“1

1 ´ sPFi

sPFi
N

(28)

To get an idea of how many samples are required by SS to
achieve the estimation accuracy PF , we assume the c.o.v
δ, λi “ λ and P pFi|Fi´1q “ ρ are fixed, then m “

logPF {logρ ` 1, and δ2 “ pm ´ 1q
1´ρ
ρN p1 ` λq, We can

get the number of simulated samples in SS is

NSS « mN “ p
|logPF |2

|logρ|2
`

|logPF |

|logρ|
q

p1 ´ ρqp1 ` λq

Nδ2

Thus, for a fixed δ and ρ, NSS9p|logPF |2`|logρ||logPF |q.
Compared to the SMC, the required samples are
NSMC91{PF . This indicates that SS is substantially ef-
ficient to estimate small failure probability.

8.4. Complexity Analysis of Genetic Algorithm and
Subset Simulation Applied on XAI Methods

Although the proposed evaluation methods can be ap-
plied to all kinds of feature attribution based XAI tech-
niques, the time complexity will be extremely high for per-
turbation based XAI methods, such as LIME and SHAP,
which take random perturbation of input features to yield
explanations.

The complexity of GA is Opt ¨ N ¨ pcpfitnessq `

cpcrossoverq ` cpmutationqqq, where t and N are evolu-
tion iterations and population size, respectively. When we
choose different XAI methods, the evaluation time of fitness
values cpfitnessq will change correspondingly.

The complexity of SS is related to the number of sub-
events m, the number of MH steps M and number of simu-
lated samples N . For estimating conditional probability of
each sub-event, M MH steps are taken, and running each
MH step requires the calculation of property function of
N samples. Thus, the complexity of SS is approximately
Opm ¨ M ¨ N ¨ cppropertyqq. When we choose differ-
ent XAI methods, the evaluation time of property function
cppropertyq will change correspondingly.

Table 4: Time counts of N ¨ cpcal_attr_disq in seconds
across different dataset (N “ 1000). Results are averaged
over 10 runs.

Dataset
Gradient
x Input

Integrated
Gradients GradCAM DeepLift LIME SHAP

MNIST 0.0202 0.0512 0.0342 0.0382 99.21 25.80
CIFAR-10 0.0909 0.3329 0.1222 0.1307 293.72 255.95

CelebA 0.0620 0.2759 0.0887 0.1029 739.59 692.75



From the definition of fitness function in GA and prop-
erty function in SS. both cpfitnessq and cppropertyq can
be approximated by the computation of interpretation dis-
crepancy cpcal_attr_disq. In practice, we can compute in-
terpretation discrepancy in a batch, e.g. N samples can run
simultaneously to generate the explanations. Therefore, we
count the running time of N ¨ cpcal_attr_disq across dif-
ferent datasets and different XAI methods in Nvidia A100.
Results are presented in Table 4. LIME and SHAP take
much more time than gradient-based XAI methods for the
batch computation of interpretation discrepancy. This will
be amplified by iteration number t in GA or number of sub-
events times number of MH steps m ¨M in SS for one time
evaluation of interpretation robustness.

8.5. Details of DL models

The information of DL models under evaluation are pre-
sented in Table 5. All experiments were run on a machine
of Ubuntu 18.04.5 LTS x86_64 with Nvidia A100 GPU and
40G RAM. The source code, DL models, datasets and all
experiment results are available in Supplementary Material,
and will be publicly accessible at GitHub after the double-
blind review process.

8.6. Experiment on Interpretation Discrepancy
Measures

We study the quality of three widely used metrics, i.e.
Mean Square Error (MSE), Pearson Correlation Coefficient
(PCC), and Structural Similarity Index Measure (SSIM)
[15] to quantify the visual discrepancy between two attribu-
tion maps. The proposed evaluation methods can produce
the adversarial interpretation with the guidance of different
metrics. As shown in Fig. 6, the first row displays three
seed inputs and corresponding attribution maps. The fol-
lowing groups separated by lines show the adversarial inter-
pretation of perturbed input measured by different metrics.
The value of PCC appears to be relatively more accurate
in terms of reflecting the visual difference between original
interpretation of seeds input and adversarial interpretations.
Smaller PCC represents larger visual difference between
two attribution maps. In addition, the value range of PCC
is 0„1, with 0„0.3 indicating weak association, 0.5„1.0
indicating strong association. Therefore, it provides a uni-
form measurement across different seeds input and different
dataset. In contrast, MSE can also precisely measure the vi-
sual difference but vary greatly with respect to seed inputs
and image size. SSIM exhibits the worst performance in
measuring difference between attribution maps.

8.7. Experiment on Parameter Sensitivity

Additional experiments on hyper-parameter settings in
GA and SS are presented in Fig. 7 and Fig. 8. The ob-
jective function interpretation discrepancy D, measured by

PCC, is optimised to converge with the increasing number
of iterations while the prediction loss J as the constraint is
gradually satisfied. The number of iterations in GA is more
important than population size.

For hyper-parameters in SS, apart from the sensitivity of
MH steps, we also discuss the impact of population size
n and quantile ρ for conditional probability. As expected,
increasing population size will improve the estimation pre-
cision, using SMC results with 108 samples as the ground
truth. However, there is no exact answer for which ρ is
better. In most cases, we find that ρ “ 0.5 can reduce
the estimation error, but will take more time for one esti-
mation. Larger ρ represents more sub events are decom-
posed and additional estimation of conditional probability
will obviously cost more time. Fortunately, we find SS es-
timation accuracy is more sensitive to the number of MH
steps M and population size n, compared with ρ. Therefore,
setting ρ “ 0.1 but increasing MH steps and population
size will get sufficiently accurate results. Finally, the rarity
of failure events can determine the setting of these hyper-
parameters. The estimating accuracy of more rare events,
e.g. PCC ă 0.2, is more sensitive to the theses parameters.

8.8. Experiments on Evaluating XAI methods

8.8.1 Evaluation for Gradient-based XAI Methods

We evaluate the robustness of more XAI methods on CI-
FAR10 and CelebA dataset, including “Deconvolution”,
“Guided Backpropagation”, “GradientˆInput”, “Integrated
Gradients”, “GradCAM”, and “DeepLift”. Results are pre-
sented in Fig. 9. In terms of misinterpretation with pre-
served classification, Integrated Gradients is the most ro-
bust XAI method due to the integral of gradient of model’s
output with respect to the input. The integral averages the
gradient-based attribution maps over several perturbed im-
ages instead of single point explanation. DeepLift has the
similar smoothing mechanism by comparing the neuron ac-
tivation with a reference point. Therefore, single point ex-
planation like Deconvolution and GradCAM are vulnerable
to this type of misinterpretation when DL model’s loss sur-
face is highly curved, leading to the great change of gra-
dients. GradientˆInput is slightly better by leveraging the
input sign and strength.

These XAI methods in general show similar robustness
against misinterpretation conditioned on misclassification,
although we find the single point explanation is a litter bet-
ter than explanation averaged over several points under this
circumstance. We guess the rarity of misclassification and
misinterpretation make it difficult to find the perturbed in-
put which have different attribution map with input seeds.
Therefore, the averaged interpretation of perturbed input
tend to be consistent with original interpretation.



Table 5: Details of the datasets and DL models under evaluation.

Dataset Image Size r DL Model Org. Grad. Reg. Hess. Reg. Adv. Train.
Train Test Train Test Train Test Train Test

MNIST 1 ˆ 32 ˆ 32 0.1 LeNet5 1.000 0.991 0.993 0.989 0.993 0.989 0.994 0.989
CIFAR-10 3 ˆ 32 ˆ 32 0.03 ResNet20 0.927 0.878 0.910 0.876 0.786 0.779 0.715 0.703

CelebA 3 ˆ 64 ˆ 64 0.05 MobileNetV1 0.934 0.917 0.918 0.912 0.908 0.904 0.769 0.789

8.8.2 Evaluation for Perturbation-based XAI Methods

We also consider the robustness of interpretation for LIME
and SHAP, the most popular perturbation-based XAI meth-
ods. In contrast to the gradient-based XAI methods,
the robustness problem of which is thoroughly studied,
perturbation-based XAI methods are difficult to be attacked
by adversarial noise due to the model-agnostic settings.
As far as we have known, the only adversarial attack on
LIME/SHAP [39] requires to scaffold the biased DL model.
That’s conceptually different from the interpretation robust-
ness mentioned in this paper, for which the internal structure
of DL model should not be maliciously modified. Thanks
to the black-box nature of our evaluation approaches, we
can assess the robustness of LIME/SHAP. As is known,
image feature segmentation is an important procedure in
LIME/SHAP. LIME/SHAP will produce inconsistent inter-
pretation at each run when the number of samples is smaller
than the number of image segments [53]. Therefore, we
record the evaluation results when using different number
of samples. For simplicity, we use quickshift to segment
the images into around 40 pieces of super-pixels, which is
the default settings of LIME/SHAP tools.

Table 6: Robustness evaluation of perturbation-based XAI
methods.

Dataset XAI Method
+ Num_Samples

Worst Case Evaluation Probabilistic Evaluation
sol

pF
(PCC)

sol
rF

(PCC) lnP
pF lnP

rF

MNIST

LIME+50 0.0002 0.9886 -0.46 -12.96
LIME+200 6.88e-05 0.9350 -0.37 -14.59
LIME+500 8.59e-06 0.8360 -0.31 -16.98
SHAP+50 4.11e-05 0.9648 -0.36 -14.78

SHAP+200 0.0011 0.9708 -0.39 -14.44
SHAP+500 0.0005 0.9851 -0.34 -14.41

CIFAR-10

LIME+50 0.0002 0.9940 -3.58 -28.96
LIME+200 0.0001 0.9986 -3.78 -30.28
LIME+500 0.0001 0.9965 -4.29 -40.06
SHAP+50 0.0014 0.9973 -3.75 -48.56

SHAP+200 0.0016 0.9950 -3.94 -47.87
SHAP+500 0.0001 0.9982 -3.84 -46.24

CelebA

LIME+50 0.0004 0.9571 -1.17 -39.63
LIME+200 1.23e-05 0.9824 -4.06 -41.41
LIME+500 0.0001 0.9739 -5.53 -48.55
SHAP+50 0.0008 0.9568 -4.24 -49.21

SHAP+200 0.0006 0.9520 -4.97 -50.69
SHAP+500 0.0002 0.9543 -4.41 -58.18

The initial results in Table 6 give us the hints that
perturbation-based XAI methods also suffer from the lack
of interpretation robustness, especially when classification
is preserved but interpretation is different. In addition, in-

creasing the number of perturbed samples is not signifi-
cant to improving interpretation robustness. In other words,
even if we use enough number of perturbed samples for
LIME/SHAP to produce precise interpretation results, they
are still easily fooled by adversarial noise. In the second
experiment, we further explore the influence of image seg-
mentation on interpretation robustness. By making the as-
sumption that image segmentation is fixed or not fixed after
adding adversarial noise, we can check whether adversar-
ial noise change the image segmentation and indirectly af-
fect the interpretation robustness of perturbation-based XAI
methods. Result in Table 7 shows that current image seg-
mentation used by LIME/SHAP is sensitive to the pixel-
level adversarial noise and will produce different feature
masks, which may affect the interpretation robustness. Nev-
ertheless, fixing image segmentation is not effective to de-
fend second type of misinterpretation-wrong classification
with persevered interpretation.

Table 7: Sensitivity of Image Segmentation to adver-
sarial noise when evaluating interpretation robustness for
LIME+200.

Dataset Image
Segmentation

Worst Case Evaluation Probabilistic Evaluation
sol

pF
(PCC)

sol
rF

(PCC) lnP
pF lnP

rF

MNIST Not Fixed 6.88e-05 0.9350 -0.37 -14.59
Fixed 0.3632 0.8892 -34.22 -17.38

CIFAR-10 Not Fixed 0.0001 0.9986 -3.78 -30.28
Fixed 0.0004 1.0000 -100 -41.33

CelebA Not Fixed 1.23e-05 0.9824 -4.06 -41.41
Fixed 0.3547 0.8289 -100 -38.72

The above observations align with the insight that inter-
pretation robustness is attributed to the geometrical proper-
ties of DL model (i.e. large curvature of loss function), but
not the XAI methods. Therefore, the most effective way to
address the problem is to train a DL model, which is more
robust to be interpreted.

8.8.3 Evaluation on Different NN Architectures

Apart from evaluation on different datasets, we do exper-
iments on different neural network architectures for CI-
FAR10 dataset. Results in Table 8 shows that Integrated
Gradients maintain the most robust XAI method to mis-
interpretation with preserved classification, invariant to the
change of neural network architecture. However, the robust-
ness to misinterpretation conditioned on misclassification



Figure 6: Comparison between PCC, SSIM and MSE as metrics of interpretation discrepancy between original interpretation
and adversarial interpretation, generated by GA and SS. Smaller PCC, smaller SSIM, and larger MSE indicate greater differ-
ence. In this set of experiments, PCC is relatively the best to quantify the visual difference between attribution maps.



Table 8: Robustness evaluation of XAI methods on different
neural network architecture for CIFAR-10 dataset.

Model
Architecture

Eval
Metrics

Gradient
x Input

Integrated
Gradients GradCAM DeepLift

ResNet20

sol
pF 0.0166 0.0375 0.0044 0.0212

sol
rF 0.8562 0.8308 0.8079 0.8551

lnP
pF -20.32 -45.05 -35.93 -21.22

lnP
rF -80.73 -87.64 -68.27 -81.81

MobileNetV2

sol
pF 0.0552 0.1167 0.0523 0.0712

sol
rF 0.7689 0.7885 0.7085 0.7707

lnP
pF -12.75 -34.99 -16.01 -8.70

lnP
rF -70.32 -62.19 -82.17 -68.38

VGG16

sol
pF 0.0767 0.1227 0.1133 0.0206

sol
rF 0.7813 0.8240 0.8637 0.8358

lnP
pF -14.42 -53.48 -47.52 -44.25

lnP
rF -59.74 -54.155 -49.90 -66.02

DLA

sol
pF 0.0737 0.0953 0.0078 0.0930

sol
rF 0.7919 0.8111 0.2113 0.7983

lnP
pF -8.48 -28.69 -4.31 -9.77

lnP
rF -39.57 -37.74 -77.57 -36.40

varies according to the internal structure of neural network.
GradCAM seems to be robust in most cases.

8.8.4 Evaluation for Real-world Models

Table 9: Robustness evaluation for Wide ResNet-50-2
model trained on ImageNet dataset. Results are averaged
over 20 samples.

XAI Methods Worst Case Evaluation Probabilistic Evaluation
sol

pF
PCC

sol
rF

(PCC) lnP
pF lnP

rF

Gradient x Input 0.159 0.463 -4.595 -100
Integrated Gradients 0.191 0.515 -39.235 -100

GradCAM 0.233 0.944 -98.725 -76.688
FullGrad 0.315 0.799 -100 -75.716

Extremal Perturbations 0.126 0.957 -4.321 -32.612
Accuracy Top-1: 81.60% Top-5: 95.76%

We add additional experiments on wide_ResNet50_2
model trained on ImageNet-1K dataset in Table 9. We dis-
cover that FullGrad aggregates layer-wise gradient maps
and thus combine the advantages of Gradient x Input and
GradCAM. Extremal Perturbations seek to find the region
of an input image that maximally excites a certain output,
which is not robust to the adversarial perturbation.



Figure 7: GA is applied to test seeds (norm balls) from MNIST and CIFAR10 dataset to find worst case interpretation
discrepancy, measure by PCC. First row: fixed population size 1000, and varied iterations; Second row: fixed iterations, and
varied population size. “GradientˆInput” interpretation method is considered.



Figure 8: SS for estimating the probability of misinterpretation (lnPF ) within a norm ball from MNIST, CIFAR10 dataset
compared with SMC using 108 samples ( 22 minutes for each estimate for MNIST; 154 minutes for each estimate for
CIFAR10). Results are averaged on 10 runs. “GradientˆInput” interpretation method is considered.



Figure 9: Robustness evaluation of different interpretation methods based on 100 randomly selected samples from CIFAR10
and CelebA test set. From top to bottom, first row (worst case evaluation) and second row (probabilistic evaluation). From
left to right, first column (misinterpretation pF ) and second column (misinterpretation rF )


