
Appendix
We include the source code at https://bit.ly/3qH2QQK.

We structure the Appendix as follows:
A Additional details about the Skill Transformer method.
B Further description of the rearrange-easy and rearrange-

hard tasks.
C Details about the demonstration dataset and baselines.

A. Further Method Details
For each training epoch of Skill Transformer, we iter-

ate over 80 randomly selected demonstrations. We step the
learning rate schedule after each of these epochs. The learn-
ing rate schedule starts at a value of 1 ⇥ 10�8 and then in a
warmup phase, linearly increases this to a value of 6⇥10�5

over 200 training epochs. The learning rate schedule then
uses a cosine decay function that terminates at zero by the
end of the training process. The method is trained until con-
vergence, equating to iterating over the entire dataset ap-
proximately 6 times in total.

In training Skill Transformer for the rearrange-hard task,
we initialize the policy from the pre-trained policy that is
trained only on 10,000 easy split episodes to speed up train-
ing times. Then, we include 10,000 demonstrations from
the entire rearrange-hard dataset to finetune the policy.

B. Further Task Details
The task settings for our experiments match those in the

2022 Habitat Rearrangement Challenge [41]. Our training
episodes consist of 60 scene layouts from the ReplicaCAD
dataset [40]. We use a subset of the 50,000 episodes from
the Rearrangement Challenge as training episodes. Each
episode has different object placements in the scene, and
the robot is randomly spawned. We use a subset of these
episodes to generate the 10,000 demonstrations for the imi-
tation learning methods.

The agent controls the arm via delta joint position tar-
gets. The simulation runs PD torque control at 120Hz while
the policy acts at 30Hz. The base is controlled through a
desired linear and angular velocity. Like in [41], we dis-
abled the sliding behavior of the robot. This means that
the robot will not move if its next base movement results
in contact with scene obstacles. This modification signifi-
cantly increases the difficulty of navigation in scenes with
densely placed furniture. An object snaps to the robot’s suc-
tion gripper if the tip of the suction gripper is in contact with
the object and the grip action is active.

The Fetch robot is equipped with an RGBD camera on
the head, joint proprioceptive sensing, and base egomotion.
The task is specified as the starting position of the object
and the goal position relative to the robot’s start in the scene.
From these sensors, the task provides the following inputs:

• 256x256 90-degree FoV RGBD camera on the Fetch
Robot head.

• The starting position of the object to rearrange relative to
the robot’s end-effector in cartesian coordinates.

• The goal position relative to the robot’s end-effector in
cartesian coordinates.

• The starting position of the object to rearrange relative to
the robot’s base in polar coordinates.

• The goal position relative to the robot’s base in polar co-
ordinates.

• The joint angles in radians of the seven joints on the Fetch
arm.

• A binary indicator if the robot is holding an object (1
when holding an object, 0 otherwise). Note this provides
information if the robot is holding any object, not just the
target object.
The maximum episode horizon is 5,000 timesteps for the

rearrange-hard task. We increased the maximum number of
timesteps for the task compared to [41] since we found this
increased the success rate of all methods.

We evaluate on 20 unseen scene configurations. We eval-
uate on a total of 400 episodes split into three difficulties
as described in Section 3. Specifically, they consist of 100
(25%) easy episodes, 200 (25%) of hard episodes, and 100
(25%) of very hard episodes.

C. Further Experiment Details
C.1. Data Generating Policy Details

As described in Section 5.1, we use M3 (Oracle) as our
data-generating policy. We follow the same setup as [16] for
training this policy. Specifically, we first train mobile ma-
nipulation policies including navigation, pick, place, open
drawer, and open fridge policies. Each policy is trained for
100M steps using PPO. We use the same reward functions
as from [16]. M3 (Oracle) then composes these skills to-
gether using an oracle planning module. Using the ground
truth environment state, the oracle planner detects if the ob-
ject or goal is in a closed receptacle and then adapts the plan
accordingly.

We use M3 (Oracle) to generate a dataset of demon-
stration trajectories for the rearrange-hard task. We run
M3 (Oracle) on the Habitat Rearrangement Challenge train
dataset [41]. We record the observations, actions, rewards,
and which skill is currently executing. The rewards are used
for training DT and DT (Skill). The skill labels are used for
training ST and DT (Skill).

C.2. Baseline Details
In this section we provide details on the baselines in Sec-

tion 5.2:
The monolithic RL (Mono) baseline follows the mono-

lithic RL baseline implementation from [40]. Mono inputs

12

https://bit.ly/3qH2QQK

DT / DT (Skill) BC-Modular ST (easy split) ST (rearrange-hard finetune)
Optimizer AdamW AdamW AdamW AdamW

Learning Rate 6e�5 6e�5 6e�5 3e�5

Warm-Up Epochs 200 100 200 400
Episodes per Epoch 80 80 80 80

Total Epochs 750 300 750 600

Table 3: Hyperparameters for all imitation learning based methods. All methods are trained with the same dataset.

TP-SRL M3 Mono
Optimizer Adam Adam Adam

Learning Rate 3e�4 3e�4 2.5e�4

Steps Per Policy 100M 100M 100M
Value Loss Coef 0.5 0.5 0.5

Table 4: Hyperparameters for all reinforcement learning
based methods. All these methods are trained with PPO.
For TP-SRL and M3, these hyperparameters are used for
training all the skill policies.

the visual representation into an LSTM network and then
inputs the recurrent state into an actor and value function
head. Mono is trained with PPO for 100M steps across
4 GPUs with 32 environment workers per-GPU, taking 21
hours to train. We fix the parameter count of Mono and all
other end-to-end baselines to be the same as Skill Trans-
former.

For DT and DT (Skill), we follow the details from [8].
Note that both DT and DT (Skill) are conditioned on the
desired return-to-go, which is the sum of future rewards.
We use the move-object reward for the entire rearrange-hard
task to train these methods. This rewards the progress of the
robot to move the target object from its start position to the
goal position. DT (Skill) is also trained with an auxiliary
classification objective for which skill is currently active.
At evaluation time, we condition on the maximum return
from the demonstrations. DT and DT (Skill) both require
access to the reward function at inference time, whereas
Skill Transformer does not.

We train M3 and M3 (Oracle) using the process de-
scribed in Appendix C.1. For M3, we execute the fixed task
plan of navigating to the object, picking up the object, nav-
igating to the goal, and then placing the object at the goal.
Note that M3 (Oracle) only adjusts its initial task plan based
on the starting environment state. It does not dynamically
adjust its task plan. For example, if the agent fails to open
the drawer correctly, it won’t retry the open skill but instead
continues with the pick skill. Like in [40], TP-SRL uses
the same training process as M3 but does not include base
movement for the pick and place skills. The navigation skill
is also rewarded for moving to the closest navigable point
to its goal rather than a nearby region as with M3.

The BC-Modular methods train the individual skills with
imitation learning using the same demonstration dataset as
Skill Transformer. These methods are deployed in the same
fashion as M3 and M3 (Oracle).

Hyperparameters for all RL methods are detailed in Ta-
ble 4 and all imitation learning methods in Table 3. The
set of hyperparameters is the same across both tasks unless
stated otherwise in the table.

C.3. Ground Truth Skill Labeling Rules
The rules used to define the ground truth skill labels are

the following:
• Navigate if the agent is not within a threshold of 1.5m

from either the object start or the goal location. We used
1.5m to be consistent with M3 (Oracle)’s training setting.

• Pick if the agent is within 1.5m from the object start lo-
cation and either the object is not hidden in a receptacle
or the receptacle containing the object is already opened.

• Place if the agent is within 1.5m from the object goal
location and either the goal is not hidden in a receptacle
or the receptacle containing the goal is already opened.

• Open-Receptacle if the agent is within 1.5m from either
the object start or the goal location and the receptacle con-
taining the object or the goal is not opened.

13

