
Appendix A
In addition to the TNS results on the self-attention mechanism given in the main text, we additionally provide the TNS

with results for other training methods that can improve the model performance. From Fig.1, we again verify that the high-
performance models have a strong representational ability to measure the stiffness phenomenon, which is consistent with the
results shown in our main text.
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Figure 1. The TNS results for other high-performance training tricks.



Appendix B
Lemma 1. Given the feature trajectories x1, x2, x3..., xL generated by a neural network with L residual blocks, i.e.,

xt+1 = xt + f(xt; θt) · ∆t, t = 0, 1, .., L − 1, where the norm ∥xt∥2 and step size ∆t are bounded. For δ(M) defined as
δ(M) = Ex0∼P (x0)I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2), ∃M̃ ∈ R+, s.t. if min(M1,M2) > M̃ , δ(M) = 0.

Proof. Let 0 < k1 ≤ ∥xt∥2 ≤ k2, t = 1, 2, ..., L − 1 and ∆t ∈ [a, b], where k1, k2, a and b ∈ R+. In fact this condition
is practical and mild in neural networks. Next, we prove that ∃M̃ ∈ R+ s.t. when M1 > M̃ and M2 > M̃ , we have (1)
ζNSI(xt) < M2 and (2) ζNSI(xt) < µ(1 +M1). For (1) ζNSI(xt) < M2, since the boundary and triangles inequality,
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Therefore, if M2 > 1
a (1 + k2
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), we have ζNSI(xt) < M2. For (2) ζNSI(xt) < µ(1 + M1), we can first estimate the lower
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When min(M1,M2) > M̃ , for any t,

ζNSI(xt) < max(M2, µ(1 +M1)), (7)

Therefore,
δ(M) = Ex0∼P (x0) I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2)︸ ︷︷ ︸

equal to 0

= 0. (8)



Theorem 1. For the δ(M) defined as δ(M) = Ex0∼P (x0)I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2), the Total Neural Stiffness
(TNS)
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Since 0 ≤ I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2) ≤ 1, we have

0 ≤ δ(M) = Ex0∼P (x0)I∃t,s.t.ζNSI(xt)≥max(µ(1+M1),M2) ≤ 1. (11)
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The δ(M) is positive and
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δ(M)dM is bounded, thus the Total Neural Stiffness

∫∫
M

δ(M)dM is convergent.



Appendix C
Theorem 2. For an ordinary differential equation du/dt = f(u), if the Jacobian matrix Jut at ut is a n × n symmetric

real matrix and {λi}ni=1 are its n distinct eigenvalues, and Re(λi) < 0, i = 1, 2, ..., n, then

ζSAI(u
t) ≈ ζSI(u

t) ·
√

c+Q[ζSI(ut)], (12)

where c is a constant and Q(·) is a function with respect to ζSI(u
t) and when ζSI(u

t) is large enough, Q[ζSI(u
t)] converges to

a 0.

Proof. Note that ζSAI(·) is computed by adjacent states with small step size, and the adjacent states are closed to a linearized
ODE. Therefore, we use Taylor expansion to provide a reasonable approximation for the right-hand side of the equation.
Specifically, we consider the Taylor expansion at ut for f(u), we have

f(u) = f(ut) + Jut(u− ut) + o(∥u− ut∥)
= Jutu+ f(ut)− Jutut + o(∥u− ut∥) ≈ Jutu+ h(t).

(13)

Let {vi}ni=1 be the eigenvectors corresponding to the eigenvalues {λi}ni=1. Since the Jacobian matrix Jut at ut is a n× n
symmetric real matrix, {vi}ni=1 form a set of orthogonal vectors. Without loss of generalization, we assume {vi}ni=1 is
standard orthogonal basis. Therefore, ut can be represented by the basis {vi}ni=1. Let

u(0) = ut =
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i=1
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where ci ∈ R. Moreover, Eq.(13) is a linear constant coefficient inhomogeneous equation. The solution of this equation is
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where g(t) is steady-state solution and since Eq.(14), g(0) = 0. Let ut′ = u(∆t), we have
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Without loss of generalization, we assume |Re(λ1)| ≥ |Re(λ2)| ≥ ... ≥ |Re(λn)|. Moreover, since the matrix Jut is
symmetric real matrix, the eigenvalues are real number, i.e., Re(λi) = λi, i = 1, 2, ..., n. Therefore,

ζSI(u
t) = max(|Re(λi)|) = |λ1|. (17)
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In Eq.(13), if we consider another linear approximation like f(u) ≈ Jutu, we can also obtain the similar conclusion as
ζSAI(u

t) ≈ ζSI(u
t) ·

√
c+ U [ζSI(ut)], where U(·) is a function with respect to ζSI(u

t) and when ζSI(u
t) is large enough,
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Appendix D:
Since the attention values are generally less than 1 (the attention values are usually measured by the Sigmoid function or

Softmax function), they are more fine-grained than the step size ∆t = 1 of the original residual neural networks. In various
backbones and their different stages, these small step sizes are used in different ways. In Fig.2, we show an example to
understand how the self-attention module uses these small step sizes. Specifically, we take three blocks in the first stage of
SENet as an example, we can find that the NSI and attention values are negatively correlated. In other words, in this case, if
the stiffness issues exist in the blocks, the module tends to generate a smaller step size to alleviate the stiff issues, which is
consistent with the discussions about the stiffness of ODEs in Section 2.1.2.
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Figure 2. The relationship between the stiffness and attention values (step size). We take the feature trajectories from the first stage of
SENet164 as an example. a, the correlations on three specific blocks. b, the distribution of correlations for all trajectories.



Appendix E:
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Appendix F:
We first introduce the structure of Adaptor in proposed StepNet in main paper. σ is Sigmoid activation function and

“Pooling” is global average pooling. “Conv” is group convolution with kernel size k = 1. “IEBN” [5] is the combination
of batch normalization and a linear transformation “IE” from [3]. Specifically, for input x ∈ Rn, “IE” can be written as
WIE ⊗ x + bIE, where WIE ∈ Rn and bIE ∈ Rn are learnable parameters. The elements in WIE and bIE can be initialized
as 0.0 and -1.0, respectively. All experiments in this paper are verified 5 times with random seeds on RTX 3080 GPUs. We
will release our source codes after peer review.

Dataset #class #training #test #Image size

CIFAR10 10 50,000 10,000 32 x 32
CIFAR100 100 50,000 10,000 32 x 32
STL-10 10 5,000 8,000 96 x 96
ImageNet 1000 1,281,123 50,000 224 x 224

Table 1. The summary of the datasets for image classification experiments.

For image classification experiments, the details of the datasets are shown in Table 1. The hyper-parameter settings of
CIFAR and ImageNet are shown in Table 2 respectively. For object detection tasks, we consider MS COCO dataset on the
same setting as [9]. We use Faster R-CNN as detectors, which are implemented by the open-source MMDetection toolkit.
The MS COCO dataset contains 80 classes with 118,287 training images and 40,670 test images. “AP”, “APS”, “APM”, and
“APL” are averaged AP for overall, small, medium, and large scale objects, respectively, at [50%, 95%] IoU interval with
step as 5%, “AP50” and “AP75”: AP at IoU as 50% and 75%, respectively.

ResNet34 ResNet50 ResNet164

Batch size 256 256 128
Epoch 120 120 164

Optimizer SGD(0.9) SGD(0.9) SGD(0.9)
depth 34 50 164

schedule 30/60/90 30/60/90 81/122
wd 1.00E-04 1.00E-04 1.00E-04

gamma 0.1 0.1 0.1
lr 0.1 0.1 0.1

Pooling GAP GAP GAP

Table 2. Implementation detail for ImageNet 2012/CIFAR10/CIFAR100 image classification. Normalization and standard data augmenta-
tion (random cropping and horizontal flipping) are applied to the training data. For ImageNet dataset, the random cropping of size 224 by
224 is used in corresponding experiments. For CIFAR datasets, we use 32 by 32 size for the random cropping.



Appendix G:
The transformer-based self-attention neural networks are a recently popular residual neural network structure in various

artificial intelligence fields. We try to give a preliminary analysis of transformer-based self-attention neural networks by the
idea in our main paper. Although there are many variants of this kind of model, we consider the simplest structure shown in
Fig.4a, i.e,

x̂t+1 = xt + f3(xt; θ3t)︸ ︷︷ ︸
Feature map

⊗F(f1(xt; θ1t), f2(xt; θ2t);ϕt)︸ ︷︷ ︸
Attention value

, (20)

where σ usually is Softmax activation function, ϕt is the learnable parameter of the self-attention module,
F(f1(xt; θ1t), f2(xt; θ2t);ϕt) is the attention value. From Eq.(20) and the analysis in main paper, the transformer-based
self-attention can also be regarded as the adaptive step size. However, is this kind of step size also stiffness-aware?

a b

Figure 4. The structure of the transformer-based self-attention mechanism.

In general, f3(xt; θ3t),f2(xt; θ2t) and f1(xt; θ1t) are some learnable matrices. We assume that they are all invertible (they
are generally invertible with probability 1 [4, 7]), as shown in Fig.4b, and the attention value in Eq.(20) can be rewritten as

F(f1(xt; θ1t), f2(xt; θ2t);ϕt) = F(f1 ◦ f−1
3 (Vt)), f2 ◦ f−1

3 (Vt));ϕt)

≜ F̃(Vt; ϕ̃t)

= F̃(f3(xt; θ3t); ϕ̃t).

(21)

Eq.(21) is similar to Eq.(10) in the main paper. At this point, the transformer-based model can also be seen as an adaptive
step size adaptor with the stiffness information f3(xt; θ3t) =

1
∆t (xt+1 − xt)|∆t=1 at xt as input. Of course, this analysis is

not necessarily accurate. In fact, the stiffness information at xt is first about xt. For Eq.(20), it would not be surprising if the
stiffness information is provided only by xt. In previous works [1, 2] on channel attention, they also consider xt as an input
to the self-attention module, rather than f(xt; θt). The experimental results illustrate that the performance of the model can
also be improved when xt is used as input, but the performance of the model with f(xt; θt) as input is somewhat stronger.
This phenomenon may be also attributed to the powerful representational capabilities of neural networks.

Method CIFAR10 CIFAR100 STL10

ViT 89.08(±0.84) 66.32(±1.03) 62.58(±1.02)

ViT+StepNet 90.32(±0.48) 68.88(±0.25) 65.58(±0.59)

Table 3. The results about ViT with StepNet. All experiments are trained from scratch.

Actually, the channel attention and transformer-based models are two views of the self-attention mechanism, the former
considers the self-attention mechanism as an additional module that can be plugged into the backbone, and the latter considers
the self-attention mechanism as a part of the backbone. As shown in Table 3, we propose to directly replace the attention
modules in ViT with StepNet. Our experimental results demonstrate that the proposed StepNet can indeed be used to enhance
the performance of ViT on multiple datasets. Previous works [6, 8] have also shown that the original ViT can be improved
by replacing their attention modules. However, since such a replacement is equivalent to changing the core part of the ViT
backbone (transformer-based attention module), can the obtained neural network structures still be called transformer-based
methods? This is an issue that deserves further discussion and analysis.
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