
Video Task Decathlon: Unifying Image and Video Tasks
in Autonomous Driving

Supplementary Material

Thomas E. Huang1 Yifan Liu1 Luc Van Gool1,2 Fisher Yu1

1ETH Zürich 2KU Leuven

https://www.vis.xyz/pub/vtd

The supplementary material is organized as follows:

• Section A: Additional base networks
• Section B: Full single-task comparison
• Section C: Experiments on KITTI dataset
• Section D: Additional ablation studies
• Section E: Full resource usage comparison
• Section F: VTD challenge details
• Section G: VTDNet details
• Section H: CPF training protocol details
• Section I: Training details
• Section J: Additional visualizations

A. Additional Base Networks

We provide comparisons of VTDNet against single-task
baselines across additional base networks in Table S1, includ-
ing ConvNeXt-T and ConvNeXt-B [17]. VTDNet maintains
its advantage in overall performance across all base networks
and achieves performance gains across most tasks. In particu-
lar, localization performance improves significantly as model
capacity increases, reaching a high score of 36.3 detection
AP and 29.4 instance segmentation AP (ConvNeXt-B). This
also translates to 37.6 MOT AP and 34.7 MOTS AP. Fur-
thermore, semantic segmentation also observes consistent
improvements up to 65.9 mIoU. However, we observe that
drivable area and lane detection do not noticeably benefit
from the increased capacity, maintaining a similar perfor-
mance across all base networks.

B. Full Single-Task Comparison

We compare VTDNet against single-task baselines, mod-
els from the official BDD100K model zoo1, and state-of-the-
art methods across all tasks. For MOT and MOTS, we use
the metrics used by the official benchmarks, mMOTA [24]

and mIDF1 [22]. All other tasks use the same metrics as in
VTD. The results are shown in Table S2.

VTDNet can achieve SOTA performance on several
benchmarks and competitive performance on the rest, de-
spite using only a single model for all tasks with much
simpler task-specific heads. For the ResNet-50 compari-
son, VTDNet achieves significantly better performance on
MOTS compared to VMT [9], obtaining an improvement of
5 points in mMOTSA, 3.7 points in mIDF1, and 2.7 points in
mAP without using extra tracking annotations or specialized
modules. On instance segmentation, VTDNet obtains an
improvement of 5.4 points over HTC [2], which utilizes a
complex cascade structure. On semantic segmentation and
drivable area segmentation, VTDNet achieves competitive
performance with DeepLabv3+ [3], despite only using a
simple FPN structure.

We also provide system-level comparisons with SOTA
methods on established BDD100K benchmarks. By sim-
ply scaling up the capacity of the base network, VTDNet
achieves performance gains across the board, outperforming
other methods that utilize hand-designed task-specific mod-
ules with a simple unified structure. On semantic segmenta-
tion and object detection, VTDNet again achieves competi-
tive performance with specialized models. On instance seg-
mentation, VTDNet achieves an improvement of 1.9 points
in AP over Cascade R-CNN [1] that uses a cascade structure
for mask refinement. On MOT and MOTS, VTDNet obtains
significantly higher mIDF1 of 1.2 points for MOT and 8.4
points for MOTS over Unicorn [32], demonstrating that it is
much better at object association. However, since Unicorn
uses a stronger detector, larger base network, and additional
tracking training data, it achieves better mMOTA in MOT.
Nevertheless, VTDNet still obtains an improvement of 5.7
points in mMOTSA in MOTS.

1https://github.com/SysCV/bdd100k-models

1

https://www.vis.xyz/pub/vtd
https://github.com/SysCV/bdd100k-models

Table S1: Comparison of VTDNet against single-task (ST) baselines using additional base networks on VTD validation set.
† denotes a separate model is trained for each task. VTDNet outperforms ST baselines on most tasks across all base networks
and achieves significantly better VTDA.

Classification Segmentation Localization Association
Tagging Sem. Driv. Lane Det. Ins. Pose MOT MOTS Flow MOT MOTSMethod Base

Network AccGw AccGs V
T

D
A

cl
s

IoUS IoUA IoUL

V
T

D
A

se
g

APD API APP APT APR V
T

D
A

lo
c

IoUF AssAT AssAR

V
T

D
A

as
s

VTDA

ST Baselines† 82.7 78.6 81.3 63.2 84.6 27.6 57.3 34.4 23.7 42.5 34.9 30.7 32.7 58.8 50.5 44.6 52.1 223.4
VTDNet ConvNeXt-T 83.2 80.0 82.1 64.8 86.3 26.7 57.9 36.0 28.4 42.8 36.2 33.4 34.8 60.4 52.1 45.3 53.5 228.3 (+4.9)

ST Baselines† 83.0 78.8 81.6 64.9 85.8 28.1 58.3 35.2 24.7 46.2 35.0 31.4 33.6 59.2 50.8 46.1 52.8 226.3
VTDNet ConvNeXt-B 83.3 80.0 82.2 65.9 86.0 27.1 58.1 36.3 29.4 45.5 37.6 34.7 36.0 60.8 51.9 48.3 54.3 230.7 (+4.4)

Table S2: Comparison of VTDNet to single-task models. Our single-task baselines are highlighted in gray, which use the
same task decoders as VTDNet. † indicates results from the official BDD100K model zoo and ‡ indicates results from prior
published works.

Method Base
Network

Tagging Sem. Driv. Lane Det. Ins. Pose Flow MOT MOTS
AccGw AccGs IoUS IoUA IoUL APD API APP IoUF mMOTA mIDF1 mAP mMOTSA mIDF1 mAP

ResNet-50
ResNet [7] 81.9 77.9 – – – – – – – – – – – – –
Semantic FPN [12] – – 59.7 – – – – – – – – – – – –
DNLNet [34]† – – 62.6 – – – – – – – – – – – –
DeepLabv3+ [3]† – – 64.0 – – – – – – – – – – – –
Semantic FPN [12] – – – 83.9 – – – – – – – – – – –
DeepLabv3+ [3]† – – – 84.4 – – – – – – – – – – –
DNLNet [34]† – – – 84.8 – – – – – – – – – – –
Semantic FPN [12] – – – – 28.4 – – – – – – – – – –
Faster R-CNN [21] – – – – – 32.3 – – – – – – – – –
Deform. DETR [37]† – – – – – 32.1 – – – – – – – – –
Cascade R-CNN [1]† – – – – – 33.8 – – – – – – – – –
Mask R-CNN [21] – – – – – – 20.2 – – – – – – – –
Cascade R-CNN [21]† – – – – – – 21.4 – – – – – – – –
HTC [2]† – – – – – – 21.7 – – – – – – – –
Simple Baseline [30] – – – – – – – 37.0 – – – – – – –
PWC-Net [25] – – – – – – – – 59.6 – – – – – –
QDTrack [20] – – – – – – – – – 36.6 50.8 32.6 – – –
Unicorn [32]‡ – – – – – – – – – 35.1 – – – – –
TETer [13]‡ – – – – – – – – – 39.0 53.6 – – – –
QDTrack-MOTS [20] – – – – – – – – – – – – 23.5 44.5 25.5
PCAN [10]‡ – – – – – – – – – – – – 27.4 45.1 26.6
VMT [9]‡ – – – – – – – – – – – – 28.7 45.7 28.3
Unicorn [32]‡

ResNet-50

– – – – – – – – – – – – 30.8 – –
VTDNet 83.2 79.7 63.8 85.4 27.8 33.4 27.1 39.7 60.3 36.4 51.5 34.7 33.7 49.4 31.6

System-level Comparison
UPerNet [31]† ConvNeXt-B – – 67.3 – – – – – – – – – – – –
AFA-DLA [33]‡ DLA-169 – – 67.5 – – – – – – – – – – – –
Cascade R-CNN [1]† ConvNeXt-B – – – – – 36.2 – – – – – – – – –
Mask Transfiner [8]‡ ResNet-101 – – – – – – 23.6 – – – – – – – –
Cascade R-CNN [1]† ConvNeXt-B – – – – – – 27.5 – – – – – – – –
Unicorn [32]‡ ConvNeXt-L – – – – – – – – – 41.2 54.0 – – – –
Unicorn [32]‡ ConvNeXt-L – – – – – – – – – – – – 29.6 44.2 –
VTDNet ConvNeXt-B 83.3 80.0 65.9 86.0 27.1 36.3 29.4 45.5 60.8 38.6 55.2 37.6 35.3 52.6 34.7

C. Experiments on KITTI Dataset

We conduct additional experiments on the KITTI
dataset [5] to demonstrate the versatility of our proposed
network and training protocol.
Dataset. KITTI is a real-world, autonomous driving bench-
mark suite that contains various vision tasks, including ob-
ject detection, tracking, and segmentation. Compared to
BDD100K [35], KITTI is much smaller in scale (∼10% of
data) and uses fewer object categories (mainly pedestrians
and cars). As only the training set is publicly available, we
split the training set into train and validation sets for our
experiments. Similar to BDD100K, the annotation density
of each image set varies widely, and the statistics are shown
in Table S3.

Evaluation Setting. We construct a similar heterogeneous
multi-task setup on KITTI for training and evaluation. We
use seven tasks that are consistent with VTD: image tag-
ging, drivable area, semantic/instance segmentation, object
detection, and MOT/MOTS. To compute VTDA, we simply
drop the missing tasks from the averages. As we do not have
estimates of task sensitivities across different base networks,
we do not scale each task score and opt for a simple average.

Comparison to Baselines. We perform the same compari-
son to single-task (ST) and multi-task (MT) baselines, and
we use the same architecture as with VTD but removing the
missing tasks’ decoders. As KITTI exhibits the same data
imbalance issue, we use the same CPF training protocol as
on VTD, but we do not find pseudo-labels to be necessary.

Table S3: Statistics of tasks and available annotations in KITTI [5].
Set Images (Train / Val) % Total Images Tasks with Annotations

Detection 6.2K / 1.3K 54% Image tagging, object detection
Segmentation 160 / 40 1% Instance segmentation, semantic segmentation
Drivable 236 / 53 2% Drivable area segmentation
Tracking 5K / 3K (=12 / 9 videos) 43% MOT, MOTS, semantic segmentation

Table S4: Comparison of VTDNet against single-task (ST) and multi-task (MT) baselines on KITTI validation set. CPF
denotes our training protocol, and † denotes a separate model is trained for each task. VTDNet achieves significantly better
VTDA than both ST and MT baselines. Black / blue indicate best / second best.

Method CPF
Class. Segmentation Localization Association
Tag Sem. Driv. Det. Ins. MOT MOTS MOT MOTS

AccG V
T

D
A

cl
s

IoUS IoUA

V
T

D
A

se
g

APD API APT APR V
T

D
A

lo
c

AssAT AssAR

V
T

D
A

as
s

VTDA

ST Baselines† 49.7 48.0 96.8 72.4 60.5 24.9 48.4 47.1 45.2 61.8 61.4 61.6 228.9
MT Baseline 50.1 42.9 94.9 68.9 53.4 31.3 51.4 52.3 47.1 60.9 61.6 61.3 227.4 (-1.5)

✗ 50.2 51.3 97.5 74.4 56.2 31.2 49.2 53.3 47.5 61.1 62.8 62.0 234.0 (+5.1)VTDNet
✓ 50.1 50.2 97.4 73.8 52.1 33.5 54.8 55.0 48.9 65.3 66.0 65.7 238.4 (+9.5)

The results are shown in Table S4.
Compared to the single-task baselines, the multi-task

baseline that jointly optimizes all tasks achieves worse perfor-
mance on most tasks, demonstrating that a naive architecture
and training protocol are not sufficient. VTDNet improves
performance of most tasks and leads to much better segmen-
tation and localization scores. With a better training protocol,
CPF enables VTDNet to achieve significantly better perfor-
mance on most tasks and an improvement of 9.5 points in
VTDA. However, we note that there exists negative transfer
between object detection, instance segmentation, and MOT
localization on KITTI, i.e., improvement in one score leads
to a drop in the others. We attribute this to differences in
annotation between each image set, as KITTI is not designed
for multi-task learning. Nevertheless, these results demon-
strate the generalizability and effectiveness of our proposed
network and training protocol.

D. Additional Ablation Studies

We provide additional ablation studies on components
of our optimization strategy. In these experiments, we
use VTDNet with ResNet-50 [7] and use the default training
parameters with CPF, unless otherwise stated.
Loss Weights. We provide full results of VTDNet with dif-
ferent loss weights configurations in Table S5 to complement
Figure 6 in the main paper. For each configuration, we show
the loss weights of each task in the first row and the task
scores in the second row, and we increase the loss weights
of a particular group of tasks to boost the performance of the
network in that aspect. Doing so consistently improves the
performance in each aspect at the cost of a drop in perfor-
mance in other aspects. This enables prioritization of certain
tasks over others through the choice of loss weights. The
overall performance of VTDNet remains stable across all
configurations.
Data Sampling Strategies. We additionally investigate dif-
ferent data sampling strategies used during joint optimization

on all VTD tasks. Our default strategy, set-level round-robin,
samples a batch of training data from each image set in order
(section H.1). We also experiment with not using any sam-
pling (None), uniform sampling (Uniform), and weighted
sampling (Weighted), following [14]. Uniform and Weighted
use a stochastic schedule that samples from a uniform and
a weighted distribution (proportional to size of each image
set). The results are shown in Table S6. We find that not
using any sampling strategy achieves decent performance al-
ready and using a stochastic sampler does not achieve further
performance gains. This is due to data-imbalance, and the
aforementioned strategies are biased towards one image set
over another. On the contrary, round-robin sampling better
balances the data and obtains the best performance overall.

E. Compute Resource Comparison
We provide the full compute resource usage during in-

ference comparison of VTDNet, single-task, and multi-task
baselines with the ResNet-50 base network in Table S7 to
complement Figure 5 in the main paper. We show the num-
ber of model parameters, number of multiply-accumulate
operations (MACs), and number of floating-point operations
(FLOPs). These are measured during model inference on
a single GeForce RTX 2080 Ti GPU. The total resource
utilization of VTDNet is less than that of the semantic seg-
mentation baseline plus the MOTS baseline, showing that a
unified network can drastically save computation. By shar-
ing a majority of the network, VTDNet achieves much better
computational efficiency compared to single-task baselines
by tackling all ten tasks with only a single set of weights.
Additionally, VTDNet only uses marginally more computa-
tion compared to the multi-task baseline, while achieving
much better performance.

F. VTD Challenge Details
We present further details regarding our proposed VTD

challenge, detailing each task and our VTDA metric.

Table S5: Ablation study on loss weights with VTDNet on VTD validation set. We show loss weights for each task (first row)
and task-specific performance along with VTDA (second row). For loss weights, differences between settings are underlined.
Increasing loss weights on a group of tasks boosts the performance of VTDNet in that aspect, enabling prioritization of task
performance depending on application.

Loss weights
Classification Segmentation Localization Association

Tagging Sem. Driv. Lane Det. Ins. Pose MOT MOTS Flow MOT MOTS
AccGw AccGs V

T
D

A
cl

s

IoUS IoUA IoUL

V
T

D
A

se
g

APD API APP APT APR V
T

D
A

lo
c

IoUF AssAT AssAR

V
T

D
A

as
s

VTDA

Default 0.05 0.05 1.0 1.0 2.0 2.0 2.0 800.0 1.0 1.0 1.0
83.2 79.7 82.0 63.8 85.4 27.8 57.8 33.4 27.1 39.7 34.7 31.6 32.9 60.3 50.1 45.1 52.7 225.3

2λG 0.1 0.1 1.0 1.0 2.0 2.0 2.0 800.0 1.0 1.0 1.0
83.4 79.9 82.2 63.7 85.4 27.4 57.6 33.1 26.6 39.4 34.0 31.0 32.4 60.2 49.9 44.9 52.5 224.7

2λS , 2λA, 2λL 0.05 0.05 2.0 2.0 4.0 2.0 2.0 800.0 1.0 1.0 1.0
83.1 79.6 81.9 64.0 85.5 28.0 58.0 33.2 27.0 38.9 33.9 31.4 32.5 60.1 49.6 44.8 52.3 224.7

2λD, 2λI , 2λP 0.05 0.05 1.0 1.0 2.0 4.0 4.0 1600.0 1.0 1.0 1.0
83.3 79.7 82.1 63.4 85.1 27.0 57.3 33.6 27.4 40.4 35.0 31.8 33.2 60.0 49.9 45.0 52.5 225.0

2λF , 2λT 0.05 0.05 1.0 1.0 2.0 2.0 2.0 800.0 2.0 2.0 2.0
83.3 79.8 82.1 63.6 85.1 27.2 57.4 33.3 27.1 39.6 34.6 31.6 32.8 60.6 50.4 45.4 53.0 225.3

Table S6: Ablation study on data sampling strategies during joint training with VTDNet on VTD validation set.

Strategy
Classification Segmentation Localization Association

Tagging Sem. Driv. Lane Det. Ins. Pose MOT MOTS Flow MOT MOTS
AccGw AccGs V

T
D

A
cl

s

IoUS IoUA IoUL

V
T

D
A

se
g

APD API APP APT APR V
T

D
A

lo
c

IoUF AssAT AssAR

V
T

D
A

as
s

VTDA

None 83.3 79.9 82.2 64.1 84.8 27.2 57.4 33.0 26.5 39.1 34.2 31.4 32.4 60.4 49.4 44.8 52.4 224.3
Uniform 83.1 79.6 81.9 62.6 85.1 27.4 57.3 33.3 27.5 39.3 34.8 31.0 32.8 60.2 50.5 43.8 52.5 224.5
Weighted 83.2 79.7 82.0 62.6 84.9 27.7 57.4 33.6 27.0 39.6 34.4 31.3 32.8 60.2 49.7 44.4 52.3 224.4

Round-robin 83.2 79.7 82.0 63.8 85.4 27.8 57.8 33.4 27.1 39.7 34.7 31.6 32.9 60.3 50.1 45.1 52.7 225.3

Table S7: Full resource usage comparison during inference
between VTDNet, single-task (ST), and multi-task (MT)
baselines. VTDNet achieves much better computational
efficiency compared to single-task baselines.

Model Params (M) MACs (G) FLOPs (G)

Tagging 23.5 33.4 67.0
Detection 41.2 190.6 381.9
Instance Seg. 43.8 192.5 385.8
Pose Estimation 44.3 192.5 385.7
Semantic Seg. 28.6 133.5 267.4
Drivable Area 28.6 133.4 273.1
Lane Estimation 28.6 133.5 273.1
Optical Flow 5.7 166.8 334.8
MOT 56.6 192.2 385.2
MOTS 59.3 216.7 434.2

ST Sum 360.1 1585.1 3189.1
MT Baseline 73.4 292.1 586.5

VTDNet 73.3 309.9 622.1

F.1. Tasks

We first detail each task based on its definition in
BDD100K [35] and modifications made to build our VTD
challenge.
Image Tagging. There are two classification tasks, weather
and scene classification. The weather conditions are rainy,
snowy, clear, overcast, partly cloudy, and foggy (plus unde-
fined). The scene types are tunnel, residential, parking lot,
city street, gas stations, and highway (plus undefined).
Object Detection. BDD100K provides ten categories for
detection: pedestrian, rider, car, truck, bus, train, motorcycle,

bicycle, traffic light, and traffic sign. To be consistent with
the segmentation and tracking sets, we only use the first
eight categories for detection and treat the final two as stuff
(background) categories.
Pose Estimation. Pedestrians and riders in BDD100K are
labeled with 18 joint keypoints throughout the body.
Drivable Area Segmentation. For drivable area segmenta-
tion, the prediction of background is important to account for
regions of the image that are not drivable. Thus, the network
needs to predict three classes. Accuracy of the background
prediction is not considered in the final score.
Lane Detection. Lanes in BDD100K are labeled with eight
categories and two attributes, direction and style. Categories
include road curb, crosswalk, double white, double yellow,
double other color, single white, single yellow, and single
other color. Directions include parallel and vertical, and
styles include solid and dashed. Thus, each lane has three
different labels. We treat lane detection as a contour detec-
tion problem for each of the three labels. During evaluation,
the performance is averaged over the three labels. Similar
to drivable area, background pixels are also required for
prediction but not considered for evaluation. Before com-
puting mIoU, we dilate the ground truth by five pixels to
account for ambiguity during annotation. Due to the slow
speed of computation, we use a subsample of 1K images for
evaluation.
Semantic / Instance Segmentation. BDD100K has 19
categories for semantic segmentation, split into 8 thing (fore-
ground) and 11 stuff categories. The 8 thing categories are

Table S8: Analysis of VTDA with VTDNet using ResNet-50 base network on VTD validation set. † denotes a separate model
is trained for each task. We also show absolute and scaled differences in task-specific performance. VTDA better balances the
contribution of each task score, leading to a more informative metric for our setting.

Method
Classification Segmentation Localization Association

Tagging Sem. Driv. Lane Det. Ins. Pose MOT MOTS Flow MOT MOTS
AccGw AccGs V

T
D

A
cl

s

IoUS IoUA IoUL

V
T

D
A

se
g

APD API APP APT APR V
T

D
A

lo
c

IoUF AssAT AssAR

V
T

D
A

as
s

VTDA

ST Baselines† 81.9 77.9 80.6 59.7 83.9 28.4 56.7 32.3 20.2 37.0 32.9 27.2 29.7 59.6 48.8 42.4 51.3 218.2
VTDNet 83.2 79.7 82.0 63.8 85.4 27.8 57.8 33.4 27.1 39.7 34.7 31.6 32.9 60.3 50.1 45.1 52.7 225.3 (+7.1)

Absolute ∆ 1.3 1.8 1.6 4.1 1.5 -0.6 1.7 1.1 6.9 2.7 1.8 4.4 3.4 0.7 1.3 2.7 1.6 –
σt 0.4 0.6 – 2.0 0.7 0.9 – 1.1 1.7 3.1 1.0 1.7 – 0.9 0.8 1.4 – –
st 1.00 0.50 – 0.20 0.50 0.50 – 0.33 0.25 0.14 0.33 0.25 – 0.50 0.50 0.33 – –

Scaled ∆ 1.3 0.9 1.4 0.8 0.8 -0.3 1.1 0.4 1.7 0.4 0.6 1.1 3.2 0.3 0.7 0.9 1.4 –

consistent with the detection set. The 11 stuff categories in-
clude road, sidewalk, building, wall, fence, pole, traffic light,
traffic sign, vegetation, terrain, and sky. Thing masks also
include instance information used for instance segmentation.
MOT / MOTS. The object tracking categories are pedes-
trian, rider, car, truck, bus, train, motorcycle, and bicycle.
Optical Flow Estimation. We use a proxy evaluation
method based on MOTS labels to evaluate optical flow es-
timation. Given segmentation masks of two consecutive
frames Mt, Mt−1 ∈ RH×W and the predicted optical flow
V ∈ RH×W×2, we use the flow to warp the second segmen-
tation mask Mt with nearest sampling to obtain a synthesized
mask of the first frame M̂t−1(p) = Mt(p+ V (p)), where p
are the pixel coordinates. The overlap of the warped mask
M̂t−1 with the ground truth mask of the first frame Mt−1

gives us an estimate of the flow accuracy for objects in the
scene, and we use mean IoU as the metric.
Data Deduplication. We found there is an overlap of
454 images between the segmentation training set and the
detection and tracking validation image sets. To maintain
consistency in evaluation, we remove the overlapping images
from the segmentation training set. Single-task baselines are
still trained with the full training set. We found this to not
noticeably affect the final results.

F.2. VTD Accuracy Metric

We provide additional details and analysis regarding our
VTD Accuracy (VTDA) metric.
Details. VTDA first uses standard deviation estimates σt

and scaling factors st = 1/⌈2σt⌉ for each task t to normal-
ize sensitivities of each metric. σt is measured over single-
task baselines each trained with eight different base net-
works (ResNet-50/101 [7], Swin-T/S/B [16], and ConvNeXt-
T/S/B [17]) and are provided in Table S8. By computing
standard deviation over these baselines, we can get an es-
timate of how network performances vary across different
architectures and capacity. Pose estimation and semantic
segmentation have large variations in performance across
different base networks. On the other hand, drivable area
segmentation and optical flow estimation have smaller vari-
ances. Based on σt, we compute scaling factors st in order
to scale each task accordingly. Pose estimation and seman-

tic segmentation have a lower st, as improvements in these
tasks are less significant. Drivable area and optical flow have
larger st, as minor improvements are more significant. Each
task score is multiplied by its corresponding st to obtain the
final score.
Analysis. We compare absolute performance differences
between VTDNet and single-task baselines (row 3) to st
scaled performance differences (last row). We also provide
VTDA metrics for each aspect, which are calculated in the
same way but using ∆ instead. With absolute difference,
performance gains and losses in instance segmentation and
pose estimation are large in magnitude and thus dominate
the localization performance. On the other hand, VTDA
scales down their values as they are more sensitive than
other metrics, leading to more balanced scores across the
board. Note that since we normalize the final scores of each
aspect to the range [0, 100], the magnitude of each score does
not matter. Similarly, absolute difference of tasks with lower
sensitivity (i.e., drivable area segmentation) will not reflect
the significance of the improvements in performance. Thus,
we scale the scores of such tasks relatively more compared
to other tasks.

G. VTDNet Details

We provide additional details regarding task decoders and
feature interaction blocks.

G.1. Task Decoders

We first describe details about certain decoders and loss
functions used for training.
Segmentation Decoders. The drivable area, lane detection,
and semantic segmentation decoders use the same structure
and employ convolutional layers to map the aggregated pixel
features to the desired output. The only exception is the lane
detection decoder, as it requires making per-pixel predictions
for three separate labels. We replace the final convolutional
layer with a convolutional layer for each label. We replace
all convolutions with deformable ones [36] and use Group
Normalization [29]. For the lane detection decoder, we addi-
tionally scale the foreground pixels by 10 to better balance
their loss against background pixels. Cross entropy is used

Feature
Extractor

Feature
Extractor

Feature
Extractor

Feature
Extractor

Pre-Training

Feature
Extractor

Decoder 1

Decoder 2

Decoder 10

…

Joint Training Fine-tuning

Training
Data

Decoder 9

Decoder 1

Decoder 2

Decoder 10

…Training
Data

Decoder 9
Pseudo-

labels
ST

Baselines

Decoder 1

Decoder 2

Decoder 10

…

Decoder 9

Task Data

Feature
Extractor

Task Data

Task Data

Task Data

Frozen

Figure S1: Our training protocol, CPF, including Curriculum training, Pseudo-labeling, and Fine-tuning. A subset of the
network is first pre-trained on a portion of data. Then, the network is jointly trained on all tasks, using pseudo-labels for
label-deficient tasks to avoid undertraining. Finally, each decoder is independently fine-tuned on its respective data while
freezing the learned shared representation.

Detection
65%

Segment.
6%

Tracking
29%

Training Data Training Iterations

Batch

Batch

Batch

Batch Batch

Feature
Extractor

Decoder 1

Decoder 2

Decoder 10

…

Decoder 9

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

Batch

Set-Level Round-Robin Sampler

𝑡 = 6

Batch Batch

…

Batch

Batch

Batch

𝑡 = 7 𝑡 = 8

…

Network Training

Training Losses

Figure S2: Illustration of our joint training protocol. We use a set-level round-robin data sampler for sampling batches of data
during training. Each batch only contains annotations for a subset of the tasks, and the corresponding decoders are updated.

as the training loss for each decoder LS, LA, and LL.
Localization Decoders. The training loss of the localization
decoders Lloc is a combination of multiple losses for the
Region Proposal Network (RPN) [21] LRPN, bounding box
decoder LD, mask decoder LI, and pose estimation decoder
LP,

Lloc = λRPNLRPN + λDLD + λILI + λPLP, (1)

following Mask R-CNN [6]. LRPN is a combination of a
cross entropy loss for the classification branch of the RPN
and a L1 loss for the regression branch. Similarly, LD use
the same losses for classification and regression. LI uses
a cross entropy loss on the instance mask predictions. For
the pose estimation decoder, instead of a one-hot heatmap
indicating the location of the joint in the Region of Interest
(RoI), we use a Gaussian distribution as the training targets,
following [30]. The keypoint localization loss LP is then
Mean Squared Error (MSE) on the predicted joint heatmaps.
We use λRPN = 1.0 in our experiments by default.
Association Decoders. The architecture of the optical
flow estimation decoder follows PWCNet [25]. The flow
decoder uses the first two pixel feature maps from the Feature
Pyramid Network (FPN) [15] to create a feature pyramid.
At each pyramid level, features of the second image are
warped using the upsampled flow from the previous layer and
then used to compute a cost volume through the correlation
operation. Then, convolutional layers are used to predict
the flow. We reduce the number of parameters in PWCNet
by reducing the number of dense connections in the flow

decoder and only using four pyramid levels. For occlusion
estimation, we use the range map approach [28], which we
found to greatly stabilize training.

The training loss of the flow decoder is a combination
of a photometric consistency loss Lphoto and a smoothness
constraint loss Lsmooth, which are commonly used by unsu-
pervised optical flow estimation methods,

LF = λphotoLphoto + λsmoothLsmooth. (2)

We use the Census loss [19] as Lphoto and the edge-aware
second order smoothness constraint [26] as Lsmooth with
an edge-weight of 150.0. We use λphoto = 1.0 and
λsmooth = 4.0 in our experiments by default. We also
experimented with using object segmentation masks as an
additional training signal by enforcing consistency between
the warped masks (similar to the evaluation protocol), but
did not find it to be beneficial for performance.

The training loss of the MOT decoder is a combination of
a multi-positive cross entropy loss Lembed and a L2 auxiliary
loss Laux,

LT = λembedLembed + λauxLaux, (3)

following QDTrack [20, 4]. QDTrack uses an additional
lightweight embedding head to extract features for each RoI
from the RPN. Contrastive learning is used on the dense
RoIs of two video frames (key and reference frames) for

Table S9: Training details of every single-task baseline and VTDNet using ResNet-50.
Model lr Optimzer Batch Size Epochs Schedule Augmentations

Image Tagging 0.1 SGD 48 60 Step decay at [30, 45] Random crop and flip

Object Detection 0.04
SGD

32
36 Step decay at [24, 33] Multi-scale, random flipInstance Seg. 0.02 16

Pose Estimation 0.02 16

Drivable Area
0.01 SGD 16

∼18 (80K iters.) Poly. decay with power = 0.9,
min. lr = 0.0001

Random scale, crop, and flip;
photometric distortionLane Detection ∼18 (80K iters.)

Semantic Seg. ∼183 (80K iters.)

MOT 0.02 SGD
16

12 Step decay at [8, 11] Random flip
MOTS 0.01 SGD 12 Step decay at [8, 11] Random flip
Optical Flow 0.0001 AdamW 36 Step decay at [24, 33] Multi-scale, random flip

VTDNet 0.0001 AdamW 16 12 Step decay at [8, 11] Multi-scale, random flip

feature learning. Lembed is defined as,

Lembed = log

[
1 +

∑
k+

∑
k−

exp
(
v · k− − v · k+

)]
, (4)

where v is the feature embeddings of the training sample in
the key frame and k+ and k− are its positive and negative
targets in the reference frame. The auxiliary loss is used to
constrain the magnitude and cosine similarity of the vectors,
which is defined as

Laux = log

(
v · k

||v|| · ||k||
− c

)2

, (5)

where c = 1 if it is a positive match and c = 0 otherwise.
We use λembed = 0.25 and λaux = 1.0 in our experiments
by default.

For MOTS, we simply combine the outputs from the
MOT and instance segmentation decoders, so there are no
trainable parameters.

G.2. Feature Interaction Blocks

VTDNet utilizes two types of feature sharing modules,
Intra-group (Intra-IB) and Cross-group (Cross-IB) Interac-
tion Blocks. We use these blocks for the segmentation and
localization task groups, but not the classification group as
we found it does not require additional shared processing.
Intra-IB uses self-attention blocks to model feature in-
teractions within a task group. For the segmentation task
group, we use Window and Shifted Window Multi-Head
Attention [16] on the high resolution feature maps to re-
duce computation costs. For the localization task group, we
use the standard Multi-Head Attention [27] on the object
features.
Cross-IB uses cross-attention blocks to model feature in-
teractions between task groups. However, such attention is
expensive as the resolution of pixel features is high and the
number of object features can be high during training. To
reduce the computational costs, we downsample the pixel
features by a factor of 8 and average pool the object features
into 1D vectors.

H. CPF Training Protocol Details

We provide additional details regarding each aspect of
our training protocol CPF. The full protocol is illustrated in
Figure S1.

H.1. Curriculum Training

Curriculum training involves pre-training a subset of the
network first then joint-training the entire network.
Pre-Training. We first train the feature extractor and local-
ization and object tracking decoders on all three image sets.
This includes the object detection, instance segmentation,
pose estimation, MOT, and MOTS tasks. We follow the train-
ing procedure of QDTrack-MOTS [20, 4], which first trains
QDTrack on the detection and tracking sets then finetunes a
instance segmentation decoder on the segmentation set and
MOTS subset while freezing the rest of the network. We
additionally train the pose estimation decoder along with the
instance segmentation decoder.
Joint Training. We provide a detailed illustration of our
joint training protocol in Figure S2. We use a set-level
round-robin data sampler, which samples a batch of training
data from each image set in order. By default, we do not
oversample the data in each set and spread out the samples
to avoid many training iterations without gradients for a
particular group of tasks. For tracking, we use the MOTS
subset instead of the full tracking set for better data balance,
which is only 10% the size. This does not compromise MOT
performance as we already pre-trained the MOT decoder
on the full tracking set. The loss weights used for joint
training is provided in Table S5 under the default setting.
The MOTS decoder has no trainable parameters, so there is
no corresponding loss weight.

H.2. Pseudo-Labeling

We use single-task baselines to generate pseudo-labels for
VTDNet. For consistency, we use single-task baselines with
the same base network as VTDNet to generate the pseudo-
labels. Such pseudo-labels are only used for pose estimation

Figure S3: Additional visualizations of VTDNet predictions on all tasks (excluding flow). Best viewed in color.

Input Image t0

Drivable Area

Semantic Segmentation

Lane Detection

2D Detection

Instance Segmentation Segmentation Tracking

Bounding Box Tracking

Input Image t1 Image Tagging

Optical Flow

2D Pose Estimation

Figure S4: Visualization of VTDNet predictions on all ten VTD tasks for a pair of input images. Best viewed in color.

and semantic segmentation as the proportion of their data is
the lowest.

Pose Estimation. We generate pose estimation pseudo-
labels following standard inference procedure. We use a
visibility threshold of 0.2 to filter the predictions, where
predicted joints with a confidence lower than this threshold
are removed.

Semantic Segmentation. We generate semantic segmenta-
tion pseudo-labels using standard inference procedure. We
use a confidence threshold of 0.3 to filter the predictions,
where prediction pixels with a confidence lower than this
threshold are set to unknown and ignored.

H.3. Fine-Tuning

After joint training, we fine-tune each task-specific de-
coder on the corresponding data for six epochs while freezing
the rest of the network. We decrease the learning rate by a
factor of 10. After fine-tuning, we combine the weights of
each decoder and the rest of the network to obtain our final
network weights.

I. Training Details

In this section, we show full training details for VTDNet
and the single-task baselines. All models are trained on ei-
ther 8 GeForce RTX 2080 Ti or 8 GeForce RTX 3090 GPUs.
We use half-precision floating-point format (FP16) for all
models to speed up training. We use the same codebase
and environment for training all models to ensure consis-
tency in the training setting. For each task, the baseline
is trained only on data from the particular task. The base-
line uses task-specific augmentations and training schedules
that are optimized for single-task performance, which we
detail in Table S9. For SGD [23], we use a momentum
of 0.9 and weight decay of 10−4. For AdamW [11, 18],
we use β1 = 0.9, β2 = 0.999, and weight decay of 0.05.
For the multi-scale augmentation, we sample an image
height from [600, 624, 648, 672, 696, 720] and scale the im-
age while keeping the aspect ratio the same. For all models
using Swin Transformer [16] or ConvNeXt [17] as the base
network, we use AdamW with a learning rate of 0.0001.

J. Visualizations

We provide additional visualizations of VTDNet predic-
tions on the VTD tasks in Figure S3. We also visualize each
task prediction separately in Figure S4. The color of each
object indicate the predicted instance identity. For drivable
area segmentation, red areas on the road indicate drivable
regions, and blue areas indicate alternatively drivable areas.
The green lines represent predicted lanes on the road. For
optical flow estimation, we segment the flow using the in-
stance segmentation mask predictions to extract object-level
flow to be consistent with the evaluation protocol. VTDNet
can produce high quality predictions for all ten tasks.

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In CVPR, pages 6154–6162,
2018. 1, 2

[2] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4974–4983,
2019. 1, 2

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1, 2

[4] Tobias Fischer, Thomas E Huang, Jiangmiao Pang, Linlu
Qiu, Haofeng Chen, Trevor Darrell, and Fisher Yu. Qdtrack:
quasi-dense similarity learning for appearance-only multiple
object tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023. 6, 7

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 2, 3

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 6

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 2, 3, 5

[8] Lei Ke, Martin Danelljan, Xia Li, Yu-Wing Tai, Chi-Keung
Tang, and Fisher Yu. Mask transfiner for high-quality instance
segmentation. In CVPR, 2022. 2

[9] Lei Ke, Henghui Ding, Martin Danelljan, Yu-Wing Tai, Chi-
Keung Tang, and Fisher Yu. Video mask transfiner for high-
quality video instance segmentation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXVIII, pages 731–
747. Springer, 2022. 1, 2

[10] Lei Ke, Xia Li, Martin Danelljan, Yu-Wing Tai, Chi-Keung
Tang, and Fisher Yu. Prototypical cross-attention networks
for multiple object tracking and segmentation. NeurIPS, 34,
2021. 2

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 8

[12] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In CVPR, 2019.
2

[13] Siyuan Li, Martin Danelljan, Henghui Ding, Thomas E.
Huang, and Fisher Yu. Tracking every thing in the wild.
In ECCV, 2022. 2

[14] Valerii Likhosherstov, Anurag Arnab, Krzysztof Choroman-
ski, Mario Lucic, Yi Tay, Adrian Weller, and Mostafa De-
hghani. Polyvit: Co-training vision transformers on images,
videos and audio. arXiv preprint arXiv:2111.12993, 2021. 3

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 6

[16] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 10012–10022, 2021. 5, 7, 8

[17] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. CVPR, 2022. 1, 5, 8

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. iclr, 2019. 8

[19] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsu-
pervised learning of optical flow with a bidirectional census
loss. In AAAI, 2018. 6

[20] Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li,
Trevor Darrell, and Fisher Yu. Quasi-dense similarity learning
for multiple object tracking. In CVPR, 2021. 2, 6, 7

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NeurIPS, 28, 2015. 2, 6

[22] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In ECCV, pages 17–35.
Springer, 2016. 1

[23] Herbert Robbins and Sutton Monro. A Stochastic Approx-
imation Method. The Annals of Mathematical Statistics,
22(3):400 – 407, 1951. 8

[24] Rainer Stiefelhagen, Keni Bernardin, Rachel Bowers, John
Garofolo, Djamel Mostefa, and Padmanabhan Soundararajan.
The clear 2006 evaluation. In Multimodal Technologies for
Perception of Humans, pages 1–44, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. 1

[25] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In CVPR, 2018. 2, 6

[26] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271), pages 839–846, 1998. 6

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017. 7

[28] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng
Wang, and Wei Xu. Occlusion aware unsupervised learning
of optical flow. In CVPR, pages 4884–4893, 2018. 6

[29] Yuxin Wu and Kaiming He. Group normalization. In ECCV,
pages 3–19, 2018. 5

[30] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for
human pose estimation and tracking. In ECCV, September
2018. 2, 6

[31] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understanding.
In ECCV, pages 418–434, 2018. 2

[32] Bin Yan, Yi Jiang, Peize Sun, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Towards grand unification of
object tracking. In ECCV, 2022. 1, 2

[33] Yung-Hsu Yang, Thomas E Huang, Min Sun, Samuel Rota
Bulò, Peter Kontschieder, and Fisher Yu. Dense prediction
with attentive feature aggregation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 97–106, 2023. 2

[34] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,
Stephen Lin, and Han Hu. Disentangled non-local neural
networks, 2020. 2

[35] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, pages 2636–2645, 2020. 2, 4

[36] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
CVPR, pages 9308–9316, 2019. 5

[37] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

