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1. Details on One-to-one Greedy Selection
In section 3.1 of our main paper, we introduce pseudo

matching pair selection module, where an algorithm named

one-to-one greedy selection method is designed to generate

final pseudo matchings. In this algorithm, we need to ex-

tract pixel-level corresponding relationship between pixel

Pi
s and Pi

t based on neighborhood hough matching consis-

tency scores C ∈ R
hs×ws×ht×wt , in which Pi

s are token

out from input source image Is at pixel-level coordinate

(hi
s, w

i
s), and similarly, Pi

t are token out from input tar-

get image It at pixel-level coordinate (hi
t, w

i
t), in addition,

hs × ws, ht × wt are resolution (counted by pixel) of input

source image Is and input target image It, respectively.

Therefore, a natural idea occurs that we can simply take

out pixel pair (Pi
s,P

i
t) with the highest matching score

from 4D matrix C. Then pixel pairs with lower scores can

be taken out accordingly. Besides, in order to remove back-

ground information, both pixels in the pixel pair (Pi
s,P

i
t)

are required to be located in the fore-ground region of cor-

responding saliency map Ss ∈ R
hs×ws or St ∈ R

ht×wt .

In summary, such procedures can be assembled as pseudo

code in our Algorithm 1. In addition, since region-level cor-

responding relationship is expanded from its centric pixel

pair, Algorithm 1 is appropriate for all stages in our pseudo-

label generation framework.

2. Further Overview for SC-ImageNet
In section 3.5 of our main paper, we discuss the proce-

dure of building SC-ImageNet, where some categories of

ImageNet [2] are abandoned due to their inherent conflict

with the single-instance semantic correspondence task. For

example, some image categories are not object-centric like
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’lakeside’ and ’seacoast’. In addition, even if a category is

object-centric, instance in images labeled as such category

may also lack salient and unique feature points, like various

kinds of balls. Besides, in some classes of ImageNet, im-

ages contain too complex clutters, where ’coral reef’ and

’sea anemone’ are typical cases. Furthermore, since our

task is single-instance semantic correspondence, categories

mainly composed of multiple instances should also be re-

moved, like ’conch’ and ’goldfish’. In summary, Figure 4

shows typical cases of abandoned categories. Moreover, we

also provide more visualization of our automatically labeled

SC-ImageNet in Figure 5 ∼ Figure 7.

Algorithm 1 One-to-one Greedy Selection

Input: 4D Matching Score Matrix C ∈ R
hs×ws×ht×wt ,

Input: Saliency Map for Source Image Ss ∈ R
hs×ws ,

Input: Saliency Map for Target Image St ∈ R
ht×wt ,

Input: Saliency Threshold T ∈ [0, 1].
1: Initialization: Empty pseudo-label set M = {},

2: Initialization: Source pixel set Ps =
{
(h1

s, w
1
s), ...

}
,

3: Initialization: Target pixel set Pt =
{
(h1

t , w
1
t ), ...

}
.

4: Remove background pixels (hi
s, w

i
s) from Ps, where

Ss(h
i
s, w

i
s) < T .

5: Remove background pixels (hi
t, w

i
t) from Pt, where

St(h
i
t, w

i
t) < T .

6: repeat
7: Find the corresponding pixel pair (Pi

s,P
i
t) from

Ps,Pt: [(hi
s, w

i
s), (h

i
t, w

i
t)], where (hi

s, w
i
s, h

i
t, w

i
t)

= argmax{(a,b,x,y)|(a,b)∈Ps,(x,y)∈Pt}C(a, b, x, y)

8: Take out the pixel Pi
s from Ps: (hi

s, w
i
s)

9: Take out the pixel Pi
t from Pt: (h

i
t, w

i
t)

10: Put corresponding pixel pair (Pi
s,P

i
t) into M.

11: until |Ps||Pt| = 0
Output: Pseudo-labels M =

{
(P1

s,P
1
t ), (P

2
s,P

2
t ), ...

}
.



Figure 1. Ablations on close-loop label filtering. CATs [1] mod-

els are pre-trained with variously sized SC-ImageNet, where the

number of training iterations is kept the same.

3. Ablations on Close-loop Label Filtering

We investigate the best size of our SC-ImageNet as well

as the most appropriate threshold for close-loop label filter-

ing module (introduced in section 3.4 of our main paper) by

conducting ablation experiments using single-instance im-

ages from ImageNet [2] with top-(10, 20, ..., 60)% consis-

tency score as pre-training dataset. Then pre-trained model

will be fine-tuned on SPair-71k [8] for evaluation. Note that

we ensure all models are pre-trained with the same number
of iterations by adjusting the number of pre-training epoch.

Figure 1 shows that a limited number of highly consistent

images are not enough for pre-training a precise semantic

correspondence model, while too many inconsistent images

are also harmful for pre-training. Finally, 113,516 highly

consistent single-instance images with top-30% consistency

score are selected to build our SC-ImageNet.

4. Comparison with Semi-supervised Methods

In section 4.3 of our main paper, we demonstrate the ef-

fectiveness of pre-training with our SC-ImageNet by con-

ducting experiments with state-of-the-art fully-supervised

semantic correspondence algorithms such as CATs [1] and

TransforMatcher [7]. Nevertheless, our pre-training strat-

egy with additional automatically labeled images could be

seen as a semi-supervised approach, which is not suffi-

ciently discussed in our main paper. As a consequence,

in this section, our pre-training setting is compared with

SOTA semi-supervised semantic correspondence methods,

including SemiMatch [6] as well as SCorrSAN [5]. Both

algorithms propose a semi-supervised strategy for seman-

tic correspondence with additional key-point pairs, instead

of our additional image pairs, provided by disagreement

of views from different data augmentation settings and

Method
PF-P. PF-W. Spair-71k

0.10 0.15 0.10 0.15 0.10

CATs[1] 92.6 96.4 79.2 90.3 49.9

CATs[1]+SemiMatch[6] 93.5 96.6 82.1 92.1 50.7

CATs[1]+Ours 92.9 96.6 84.0 94.5 54.6
Table 1. Quantitative evaluation of CATs [1] and CATs based
semi-supervised approaches on PF-PASCAL (PF-P.), PF-
Willow (PF-W.) [3] and SPair-71k [8]. The best results in bold.

+Ours demonstrates the model of CATs is firstly pre-trained with

our SC-ImageNet, then fine-tuned on target dataset. Note that the

input resolution of original algorithms is not modified.

Method
PF-P. PF-W. Spair-71k

0.10 0.15 0.10 0.15 0.10

SCorrSAN[5] 93.3 96.6 80.0 89.8 55.3

SCorrSAN[5]+Ours 93.4 96.8 82.3 91.6 58.9
Table 2. Quantitative evaluation of SCorrSAN [5] and
SCorrSAN based semi-supervised approaches on PF-PAS
CAL (PF-P.), PF-Willow (PF-W.) [3] and SPair-71k [8]. The

best results in bold. +Ours demonstrates the model of SCorrSAN

is firstly pre-trained with our SC-ImageNet, then fine-tuned on tar-

get dataset. Note that the input resolution of original algorithms is

not modified.

teacher-student model, respectively. Therefore, following

[10], SemiMatch and SCorrSAN can be considered as semi-

supervised approaches based on pseudo-labels, which is

also appropriate for our pre-training setting.

Comparison between Additional Image Pairs and
Additional Key-point Pairs. For fair comparison, CATs

[1] is selected as our baseline, where SemiMatch [6] and our

pre-training strategy with SC-ImageNet are independently

implemented. As shown in Table 1, for the most challeng-

ing SPair-71k with large-scale variation, our approach out-

performs SemiMatch by 3.9% PCK@0.1. It demonstrates

the effectiveness of pre-training on our SC-ImageNet con-

taining a large number of additional image pairs. To show

the effectiveness and robustness of our framework in detail,

we compare per-class accuracy in Table 3 and our approach

outperforms original CATs and SemiMatch on 13 of the 18

classes. Our qualitative results are shown in Figure 2. Fur-

thermore, pre-training on our SC-ImageNet can also signif-

icantly improve the generalization power of semantic corre-

spondence algorithms, which is proven through the best per-

formance in PF-WILLOW for all PCKs by 1.9% and 2.4%,

respectively compared to the same baseline model, CATs,

trained with additional key-point pairs given by SemiMatch.

However, our method do not perform well on PF-PASCAL

at PCK@0.10, due to sparse key-point annotation in im-

age pairs from PF-PASCAL and our automatically labeled

SC-ImageNet, which results in less information on neigh-

boring key-point [6]. Finally, we can draw the conclusion

that semi-supervised semantic correspondence method with

additional image pairs are better than approaches with addi-

tional key-point pairs in generalization ability, such as deal-



Method aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CATs[1] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

CATs[1]+SemiMatch[6] 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7

CATs[1]+Ours 58.8 44.6 71.7 41.0 49.2 71.2 46.4 73.0 23.3 69.8 58.3 59.8 55.8 39.2 33.0 41.6 75.8 73.9 54.5

Table 3. Per-class quantitative evaluation of CATs [1] and CATs based semi-supervised approaches on SPair-71k dataset. [8] The

best results are in bold. +Ours demonstrates the model of CATs is firstly pre-trained with our SC-ImageNet, then fine-tuned on SPair-71k.

Note that the input resolution of original algorithms is not modified.

Method aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

SCorrSAN[5] 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3

SCorrSAN[5]+Ours 64.5 47.5 78.0 39.9 49.2 65.1 49.0 74.0 29.4 75.4 64.3 60.9 54.8 52.0 48.1 47.4 87.0 75.4 58.9

Table 4. Per-class quantitative evaluation of SCorrSAN [5] and SCorrSAN based semi-supervised approaches on SPair-71k dataset.
[8] The best results are in bold. +Ours demonstrates the model of SCorrSAN is firstly pre-trained with our SC-ImageNet, then fine-tuned

on SPair-71k. Note that the input resolution of original algorithms is not modified.
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Figure 2. Qualitative results of CATs [1] and CATs based semi-
supervised approaches on SPair-71k [8]. SemiMatch is pro-

posed in [6]. +Ours demonstrates the model of CATs is firstly pre-

trained with our SC-ImageNet, then fine-tuned on SPair-71k. Col-

ored cross means corresponding key-point (ground-truth). Green

dots and lines mean correct matches, while red dots and lines mean

incorrect matches (measured by PCK@0.1 as in Table 1).

ing with matching scenes with obvious variation, while ap-

proaches with additional key-point pairs show more exper-

tise in strict matching criterion.

Cooperation between Additional Image Pairs and
Additional Key-point Pairs. In this part, SCorrSAN

[5], an originally semi-supervised semantic correspondence

method, is our baseline. As shown in Table 2, for PF-

PASCAL, SCorrSAN pre-trained with our SC-ImageNet

gets slightly better performance. At the same time, for

SPair-71k, our approach gets 3.6% higher PCK@0.1. Both

results indicate that cooperation between additional image

pairs and additional key-point pairs is effective in improv-

ing semantic correspondence methods. To show the effec-

tiveness and robustness of such cooperation in detail, we

compare per-class accuracy in Table 4 and our approach

provides more accurate corresponding key-point prediction

on 15 of the 18 classes. Our qualitative results are shown

in Figure 3. In addition, based on the experimental re-

sults of PF-WILLOW, generalization power of SCorrSAN
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Figure 3. Qualitative results of SCorrSAN [5] and SCorrSAN
based semi-supervised approaches on SPair-71k [8]. +Ours

demonstrates the model of SCorrSAN is firstly pre-trained with

our SC-ImageNet, then fine-tuned on SPair-71k. Colored cross

indicates corresponding key-point (ground-truth). Green dots and

lines mean correct matches, while red dots and lines mean incor-

rect matches (measured by PCK@0.1 as in Table 2).

is also improved by pre-training with our SC-ImageNet, for

getting better performance than SCorrSAN with only ad-

ditional key-point pairs on all PCKs by 2.3% and 1.8%, re-

spectively. As a consequence, for semi-supervised semantic

correspondence algorithms, cooperation between additional

image pairs and additional key-point pairs is beneficial for

their effectiveness, robustness and generalization ability. In

other words, additional image pairs are compatible with ad-

ditional key-point pairs, which has shown promising match-

ing power.

5. Additional Qualitative Results

As shown in Figure 8 ∼ Figure 10, we qualitatively com-

pare state-of-the-art fully-supervised semantic correspon-

dence models, including CATs [1], TransforMatcher [7],

DHPF [9] as well as VAT [4] , with pre-training on our

SC-ImageNet and accordant models with original training

settings. On the basis of our qualitative results, models pre-

trained on SC-ImageNet are seen to establish more accurate

correspondences in the challenging SPair-71k [8], which

contains obvious intraclass variations, scale difference, oc-

clusion and truncation.



Figure 4. Typical cases of abandoned categories. All images are selected from ImageNet [2]. (a) Not object-centric: categories are

not object-centric. (b) Lack in salient and unique feature point: there are not enough salient and unique feature points in instance. (c)
Too complex context: images contain too complex clutters. (d) Multiple instances: categories are mainly composed of multiple instance

images, which is conflict with single-instance semantic correspondence task.



Figure 5. Visualization of our SC-ImageNet (Part 1 of 3). All images are selected from ImageNet [2]. Green dots and lines are our

automatically generated pseudo-labels.



Figure 6. Visualization of our SC-ImageNet (Part 2 of 3). All images are selected from ImageNet [2]. Green dots and lines are our

automatically generated pseudo-labels.



Figure 7. Visualization of our SC-ImageNet (Part 3 of 3). All images are selected from ImageNet [2]. Green dots and lines are our

automatically generated pseudo-labels.



CATs CATs+Ours DHPF DHPF+Ours TM TM+Ours VAT VAT+Ours

Figure 8. Additional qualitative results on SPair-71k [8] (Part 1 of 3). TM means TransforMatcher [7]. Other methods are proposed

in CATs[1], DHPF[9] and VAT[4], respectively. +Ours demonstrates semantic correspondence models are firstly pre-trained with our

SC-ImageNet, then fine-tuned on SPair-71k. Colored cross indicates corresponding key-point (ground-truth). Green dots and lines mean

correct matches, while red dots and lines mean incorrect matches (measured by PCK@0.1 as in Table 2 of our main paper).



CATs CATs+Ours DHPF DHPF+Ours TM TM+Ours VAT VAT+Ours

Figure 9. Additional qualitative results on SPair-71k [8] (Part 2 of 3). TM means TransforMatcher [7]. Other methods are proposed

in CATs[1], DHPF[9] and VAT[4], respectively. +Ours demonstrates semantic correspondence models are firstly pre-trained with our

SC-ImageNet, then fine-tuned on SPair-71k. Colored cross indicates corresponding key-point (ground-truth). Green dots and lines mean

correct matches, while red dots and lines mean incorrect matches (measured by PCK@0.1 as in Table 2 of our main paper).



CATs CATs+Ours DHPF DHPF+Ours TM TM+Ours VAT VAT+Ours

Figure 10. Additional qualitative results on SPair-71k [8] (Part 3 of 3). TM means TransforMatcher [7]. Other methods are proposed

in CATs[1], DHPF[9] and VAT[4], respectively. +Ours demonstrates semantic correspondence models are firstly pre-trained with our

SC-ImageNet, then fine-tuned on SPair-71k. Colored cross indicates corresponding key-point (ground-truth). Green dots and lines mean

correct matches, while red dots and lines mean incorrect matches (measured by PCK@0.1 as in Table 2 of our main paper).
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