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A. Preliminary Setting

A.1. Notations and Terminology

Table A.1. List of notations.
Index

i, j Variable element (matrix element) index
Variable

x Observational data input
y Label of the data
z Bottleneck features
v Abstract factors corresponding to nodes in DAG
ϵi Mutually independent exogenous noise variable in generating vi
Pai Set of causal parents of i-th factor
A Adjacent matrix for DAG representation
P tol Pairwise total effect matrix, P tol

i,j indicates the total effect i→ j
νe
c In-domain prototype variable corresponding to domain e, class c

µc Cross-domain prototype variable corresponding to class c
Bν A set of in-domain prototypes which is updated by original bottleneck fea-

tures ze

Bµ A set of cross-domain prototypes which is updated by invariant (masked)
features ze

y

Function and Hyper-parameter
g Potential invertible function which control the vi generating
ϕ Featurizer which maps data to features
ω Classifier which maps features to label
λ Lagrangian multiplier
c Acyclic penalty parameter
α Threshold parameter for penalty c updating
η Acyclic penalty scale factor
λl1 Sparsity weights for adjacent matrix A

A.2. Dataset Details

CMNIST [3] contains images adapted from the MNIST and the binary labels are given by whether the
image digit is larger than 5. The digits are colored either red or green so that each color strongly
correlates with the label. Additionally, the true labels are flipped with probability 25% as label
noise to enhance the spurious correlation between colors and labels. This dataset has 2 classes for
each domain, which amounts to 50,000 images of size (2, 14, 14).

PACS [23] is a conventional domain generalization benchmark for image classification. It contains
9,991 images with 7 classes including {dog, elephant, giraffe, guitar, horse, house, person} from
4 domains including {art, cartoons, photos, sketches}.

OfficeHome [53] is a conventional domain generalization benchmark. It contains four domains: {Art,
Clipart, Product, Real World}. This dataset has 65 classes for each domain, which amounts to
15,588 images.

DomainNet [38] is a large conventional domain generalization benchmark. It contains six domains
{clipart, infograph, painting, quickdraw, real, sketch}. This dataset has 345 classes for each do-
main, which amounts to 586,575 images of size (3, 224, 224).



B. Motivating Example
B.1. Synthetic Example

In this section, we extend the synthetic experiments and provide further in-depth analysis. Following
the data-generating process definition introduced by [3, Arjovsky et al.] we simplify the data-generating
process as following scalar formulation:

zey ← ϵex, ϵex ∼ N (0, (σe
x)

2), (17)

ye ← ξyz
e
y + ϵy, ϵy ∼ N (0, σ2

y), (18)

zes ← ξesy
e + ϵes, ϵes ∼ N (0, (σe

s)
2), (19)

where ξy is underlying weight parameter for invariant features, ξes is underlying weight parameter for
spurious features, σe

x, σy, σ
e
s are variances of domain-specific additive Gaussian noises. In the sequel,

we first discuss why the ordinary ERM cannot produce unbiased estimates in the presence of spurious
factors. Then, we show how our DAG modeling is able to recognize spurious relations and leads to
unbiased estimations.

Emperical risk minimization perspective. For notation simplicity, denote ze = [zey, z
e
s ]

⊤ and
ξ̃y, ξ̃

e
s , ξ̃ represent the estimated parameters from observation data. Here we illustrate three cases of

potential estimation results:

• Case 1: Regress from zey to obtain ŵ⊤ = [ξ̃y, 0];

• Case 2: Regress from zes to obtain ŵ⊤ = [0, ξ̃es ];

• Case 3: Regress from zey, z
e
s to obtain ŵ⊤ = ξ̃.

In the general case, we are not given the prior identification information of which portion of observa-
tional data ze is true causal latent. Following the ERM protocol, by using Least Squares Regression,
the estimation of ŵ is composed of two portions ŵy and ŵs, that is

ŷe =
[
ŵy ŵs

]
·
[
zey
zes

]
+ ϵ

=
[
ŵy ŵs

]
·
[

ϵx
ξes(ξyϵx + ϵy) + ϵes,

]
+ ϵ,

(20)

let Z = [ze⊤
1 , ze⊤

2 , . . . ]⊤ then we have,

R(w) =
1

2
(Zw − Y )⊤(Zw − Y ), (21)

as a solution of Least Squares Regression estimation, ŵ is

E[ŵ] = (Z⊤Z)−1Z⊤Y

= (Z⊤Z)−1Z⊤(Zw + ϵ)

= (Z⊤Z)−1Z⊤Zw + (Z⊤Z)−1Z⊤ϵ

= w + (Z⊤Z)−1Z⊤ϵ,

(22)

while the insight behind Least Squares Regression estimation is that when the assumptions of Gauss-
Markov Theorem are satisfied we have E[ŵ] = w. However, the existence of spurious relations in
training domains leads to biased estimation ŵy =

ξyσ
e
s

σy+σe
s

, ŵs =
σy

ξes(σy+σe
s)

, that means we can never
recover the true data-generating process. A general expectancy is that ϵes exhibits a sufficient level
of variation among different domains in the training distribution. Therefore, one can recover the true
parameters from the observation. Unfortunately, in practice, we cannot expect the σe

s → +∞ for a
variety of reasons, such as selection bias, limited observations, etc.

Directed acyclic graph perspective. In contrast to ERM, we demonstrate that learning with a DAG
always results in the first of the following three cases:



• Case 1: Regress from zey to obtain ŵ⊤ = [ξ̃y, 0];

• Case 2: Regress from zes to obtain ŵ⊤ = [0, ξ̃es ];

• Case 3: Regress from zey, z
e
s to obtain ŵ⊤ = ξ̃;

When taking all observation data including labels into to directed acyclicity graph regression problem:zeyzes
ye

 =

 0 w1,2 w1,3

w2,1 0 w2,3

w3,1 w3,2 0

zeyzes
ye

+

ϵexϵes
ϵy

 . (23)

When considering the relation between zes and ye, there are two directions: (i)-zes → ye with weight
w3,2; (ii)-ye → zes with weight w2,3. Since the final graph is DAG, hence, one of w3,2, w2,3 must be
zeroed out. Suppose:

zes = ξesy
e + ϵes, (24)

where ye and ϵes are independent. It is easy to check that

ye = ξ̃esz
e
s + ϵ̃es, (25)

with ξ̃es =
ξesVar(ye)

(ξes)
2Var(ye) ̸= 1

ξes
, and ϵ̃es = ye − ξ̃eszes . Therefore, according to the additive noise model,

only the direction ye → zes can be kept. Finally, with the convergence of the DAG learning, the causal
graph of the data-generating process can be recovered as follows:zeyzes

ye

 =

 0 0 0
0 0 ξes
ξy 0 0

zeyzes
ye

+

ϵexϵes
ϵy

 . (26)

As a result, by introducing the DAG modeling method, we will be able to model the relationship between
ze and ye, leading to unbiased estimations.

C. Proofs
C.1. Proof of Theorem 1

Restatement of Theorem 1 If G matches the common structures of all Ge, then it discards the directed
edges that start from domain-private factors ve

r and identifies the association vi ↔ vj into one correct
causal direction.

Proof. The proof consists of two major statements, (i)-Causal direction identification; and (ii)-domain-
private factors discards.

In general conditions, the set of factors is fixed, and the edges between them vary in different do-
mains. Hence, a graph Ge = (V, Ee) for a particular domain e consists of a set of vertices V and a set
of edges Ee ⊆ V × V . The Ge can also be equivalently represented by an adjacent matrix Ae ∈ Rd×d.

Causal Direction Identification. Let V ∈ Rd×n be the values matrix of a set of vertices V , and
v ∼ N (0,Σ) (without the loss of generality, we assume the values are preprocessed by a simple bias
term with zero means). The linear DAG model is given by:

V = AeV +N , (27)

where N ∈ Rd×n denotes the exogenous mutually independent noises. And ϵ is characterized by the
covariance matrix Ω = diag(σ2

1 , . . . , σ
2
d). Assuming I − Ae is invertible, then we can rewrite the

Eq. (27) as:
V = (I −Ae)−1N . (28)

The precision matrix Θ = Σ−1 of V as:

Θ = (I −Ae)Ω−1(I −Ae)⊤ (29)



The least squares objectives yields:

Lrec(A
e;Σ) =

1

2
Tr
(
(I −Ae)⊤Σ(I −Ae)

)
. (30)

The log-density function of v is then:

log p(v;Ae,Ω) =− 1

2
log detΣ− 1

2
v⊤Θv − d

2
log 2π (31)

=− 1

2
log det(I −Ae)−1NN⊤(I −Ae)−⊤ − 1

2
v⊤Θv − d

2
log 2π (32)

=− 1

2
log detΩ+ log |det(I −Ae)| − 1

2
v⊤(I −Ae)Ω−1(I −Ae)v + c (33)

=− 1

2

d∑
i=1

log σ2
i + log |det(I −Ae)| − 1

2

d∑
i=1

(vi −Ae
iv)

2

σ2
i

+ c, (34)

where Ae
i ∈ Rd denotes the i-th row vector of A. Eq. (32) means that inputs are generated accom-

panied with mutually independent noises, which directly introduce the Eq. (28) for covariance matrix
Σ calculation. And this mutually independent noise constraint lead to an extra regularization term
log |det(I −Ae)|.

Given i.i.d. samples V = [v(1), . . . ,v(n)] ∈ Rd×n generated from the ground truth distribution, the
average log-likelihood of V is given by:

LDAG(A
e,Ω;V ) = −1

2

d∑
i=1

log σ2
i + log |det(I −Ae)| − 1

2n

d∑
i=1

n∑
k=1

(
v
(k)
i −Ae

iv
(k)
)2

σ2
i

+ c. (35)

To profile out the parameter Ω, we have ∂L
∂σ2

i
= 0 thereby deriving the solution:

σ̂2
i =

1

n

n∑
k=1

(
v
(k)
i −Ae

iv
(k)
)2
, (36)

then, take this formulation back, we have:

L(Ae, Ω̂(Ae);V ) = −1

2

d∑
i=1

log

(
n∑

k=1

(
v
(k)
i −Ae

iv
(k)
)2)

+ log |det(I −Ae)|+ c. (37)

The goal is therefore to find the weighted adjacent matrix Ae that maximizes the profile likelihood
function L(Ae, Ω̂(Ae);V ).

To find the optimal solution of the loss function, we need to set the derivative to zero and solve for
Ae. However, the mutually dependent noise condition leads to a non-convex objective, so we may need
to use numerical methods to find the optimal solution. Notably, due to the strict constraint that Ae is
DAG. Therefore, for arbitrary element pair Ai,j and Aj,i solution of Âe, only either of them can hold.
Let ψ(·) be the topological ordering function. The decision rule is as follows:

0 if ψ(i) = ψ(j) or Ae
i,j = Ae

j,i = 0;

Âe
i,j → 0 if L(Ae |Ae

j,i=0;Σ) > L(Ae |Ae
i,j=0;Σ);

Âe
j,i → 0 if L(Ae |Ae

j,i=0;Σ) < L(Ae |Ae
i,j=0;Σ).

(38)

Revisit the definition of the spurious relations in Eq. (1), ye = ξyz
e
y + ϵy and ze

s = ξesy
e + ϵes and the

Proposition 1 in [7], arbitrary reverse the correct direction between elements can always lead to lower
likelihood. Therefore, optimizing the expectation on the objective with the DAG constraint always leads
to the correct direction.



Discard Domain-private Factors. As soon as the causal directions between factors are determined,
the determination of random factors will quickly erode to the null edge. Let G = ∩Ee=1Ge be the
common graph, which means extracting a common set of edges E = ∩Ee=1Ee. For a particular factor
vi in one domain, it has no support in other domains. Accordingly, each graph Ge is optimally learned,
there are no edges sourced from this kind of factor in the graph. As a result, these edges will be dropped
from the common graph which is the intersection of all domains. At the time of inference, they will not
be considered.

C.2. Proof of Theorem 2

In practical conditions, there are always massive spurious and domain-private features. Similar result
has been derived in [4], we provide a proof sketch. For the sake of the proof, we assume that each
domain contains the same number |De

L| of samples. Let Σe be the covariance matrix of features in e-th
domain, and Ωe be the precision matrix. For any vector v, we can incorporate the information of the
covariance matrix named Mahalanobis norm ∥v∥M :=

√
v⊤Mv. Let ∥A∥M := supv ∥AMv∥/∥v∥.

Ainv = argmin
A

E[Lrec(V ;A)]. (39)

The loss for a DAG adjacent matrix A with a sample v is:

Lrec(v;A) =

d∑
i=1

L2 (gi(v), vi) . (40)

Assumption 1 (Bounded statistical leverage). For factors V , there exists ρ such that, almost surely:

∥Σ−1/2v∥√
E
[
∥Σ−1/2v∥2

] ≤ ρ, (41)

Assumption 2 (Subgaussian noise). There exists finite σi ≥ 0 such that, almost surely:

E[exp(ηϵi)|Pai] ≤ exp(η2σ2
i /2) ∀η ∈ R, i ∈ [d]. (42)

Assumption 3 (Bounded aprroximation error). There exist finite b0 ≥ 0 such that, almost surely:

∥Σ−1/2v(v −Av)∥√
E
[
∥Σ−1/2v∥2

] ≤ b0. (43)

Lemma 1 (Excess mean squared error, extended from [4] Proposition 21). For any A,

E
[
∥v −Av∥2

]
− E

[
∥v −Ainvv∥2

]
= E [∥(A−Ainv)v] = ∥A−Ainv∥Σ (44)

Ê
[
∥v −Av∥2

]
− Ê

[
∥v −Ainvv∥2

]
= ∥A− Âinv∥Σ̂. (45)

The same arguments also hold for each Ae.
Lemma 2 (Effect of eorrors in Σ̂ estimation [4] Theorem 11). With Assumption 1, for any δ ≤
min{1, de−2.6}, with probability at least 1− δ,

∥Σ−1/2(Σ̂−Σ)Σ−1/2∥ ≤
√

4ρ2d(ln d+ ln(3/δ))

n
+

2ρ2d(ln d+ ln(3/δ))

3n
. (46)

Further, if ∥Σ−1/2(Σ̂−Σ)Σ−1/2∥ < 1, then,

∥Σ1/2Σ̂−1Σ1/2∥ ≤ 1

1− ∥Σ−1/2(Σ̂−Σ)Σ−1/2∥
. (47)



Lemma 3 (Extended regret error of empirical multi-output least square solution from [4] Theorem 11).
Pick any δ ≤ min{1, de−2.6}, by Assumption 1 and Assumption 2, the mutually independent noise has
same variance σ, with probability at least 1− δ, the following holds:

∥Âinv −Ainv∥2Σ ≤
2dσ2(d+ 2

√
d ln(3/δ) + 2 ln(3/δ))

n
+ o(1/n), (48)

where o(1/n) denotes a higher order term.
Proposition 1 (Error decomposition). Define the bias from the OOD, and the variance. Here let Ā
denote the conditional expectation of Â given V :

εbs := ∥Ā−Ainv∥2Σ, εvr := ∥Â− Ā∥2Σ.

Follow the triangle inequality (a+ b)2 ≤ 2(a2 + b2), the general error decomposition:

∥Â−Ainv∥2Σ ≤ εbs + εvr + 2
√
εbsεvr (49)

≤ 2(εbs + εvr). (50)

Proof. The proof of Theorem 2 uses the decomposition of ∥Â − Ainv∥2Σ in Proposition 1, and then
bounds each term using the lemmas declared this section. The Eq. (6) can be translated into:

L(A) =min
A

∑
e

Le
inv(A) + h(A) (51)

=min
A

∑
e

Êe
[
∥v −Av∥2

]
+ h(A) (52)

Because h(A) is a strict constraint, so the minimizer of each term would have h(A) = 0, then we have:

∥Â−Ainv∥2Σ =
∑
e

Êe
[
∥v − Āv∥2

]
− Ee

[
∥v −Ainvv∥2

]
︸ ︷︷ ︸

εbs

+
∑
e

Êe
[
∥v − Âv∥2

]
− Ee

[
∥v − Āv∥2

]
︸ ︷︷ ︸

εvr

, (53)

pick any δ ≤ min{1, de−2.6}, if the Assumption 1, Assumption 2 and Assumption 3 hold, with the
probability at least 1− δ, if we have:

n > 6ρ2d(ln(d) + ln(3/δ)), (54)

the following holds:

1. Relatvie spectral norm error in Σ̂:

∥Σ1/2Σ̂−1Σ1/2∥ ≤ 1

1− κs
, (55)

then, by Lemma 2:

κs :=

√
4ρ2d(ln d+ ln(3/δ))

n
+

2ρ2d(ln d+ ln(3/δ))

3n
. (56)

2. Effect of bias:

εbs ≤
2E

(1− κs)2

(
E
[
∥Σ−1/2v(v −Av)∥2

]
n

(
1 +

√
8 ln(3/δ)

)2
+

16b20d ln(3/δ)
2

9n2

)
(57)

≤ 2E

(1− κs)2
(
ρ2dE[∥v −Av∥2]

n

(
1 +

√
8ln(3/δ)

)2
+

16b20d ln(3/δ)
2

9n2

)
. (58)



3. Effect of noise:

εvr ≤
1

1− κs
· 2dσ

2(d+ 2
√
d ln(3/δ) + 2 ln(3/δ))

E ∗ |De
L|

. (59)

where the total parameters are trained in the mixture of domains, the training set can be regarded
as one domain with E ∗ |De

L|.
As the E[vi|Pai] = Aiv is correct almost surely, and the term with b0 appears only in the o(1/n) term,
simplify the representation:

∥Â−Ainv∥2Σ ≤
2dσ2(d+ 2

√
d ln(3/δ) + 2 ln(3/δ))

E ∗ |De
L|

+ o(1/n). (60)

Comparing L̂(Ainv) with L̂(A). Assume the absolute value of each element is lower bounded as
|vy,i| ≥ v̄i, the variance is lower bounded as Var(vy,i) ≥ s. For a set of domain-private (random)
factors Dr, if A maintains them, by simple algebra, we have:∑

e

Ee∥[v −Av]Pay
∥2 − Ee∥[v −Ainvv]Pay

∥2 =
∑
i∈Dr

viVar(vy,i), (61)

Hence, with a probability of at least 1− δ, we have

L̂(A)− L̂(Ainv) (62)

=Var(ϵ) +
∑
i∈Dr

viVar(vy,i) + εbs(A) + εvr(A) (63)

−Var(ϵ)− εbs(Ainv)− εvr(Ainv) (64)

≥ 1

1− κs
σ2(d+ 2

√
d ln(3/δ) + 2 ln(3/δ))

E ∗ |De
L|

+ v̄s. (65)

Further, one of the elements vy in vector v is specified as the label, W is the ideal stable classifier
parameter, and Ŵ is an estimated classifier parameter. Then by the [4] Remark 12, if:

n ≥ 6ρ2|Pay|(log(|Pay|+ ln(3/δ)). (66)

with the probability at least 1− δ, the following bound on the stable classifier parameters holds:

∥Ŵ −W ∥2Σ ≤
2|Pay|σ2

y(|Pay|+ 2
√
|Pay| ln(3/δ) + 2 ln(3/δ))

E ∗ |De
L|

+ o(1/n). (67)

To simplify the condition formulation, we have the following:

n = E ∗ |De
L| > Q1 +Q2 ln(d/δ), (68)

where Q1 = 6ρ2y|Pay|(log(|Pay|+ ln(3/δ)) + 6ρ2d ln(3), Q2 = 6ρ2d.

D. Additional Experimental Results
D.1. Complete Results on CMNIST

For all experiments on the CMNIST dataset, we report the accuracy of the last step. All reported
statistics are average values over 3 random seeds. We set the max scale ratio of penalty weight as 106

for all the experiments and datasets.
In Figure D.1, we plot the accuracies of training on different DG subtasks on CMNIST along with

the penalty during training. First, we can observe the accuracies of iDAG consistently approximate the
oracle level in test domains across all subtasks. Second, the overall trends on three subtasks follow our
arguments that the acyclicity penalty term increases as the model searches the invariant causal struc-
ture. And then with the convergence of the model reached, the penalty disappears and the performance
becomes steady.
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Figure D.1. Complete results on CMNIST

D.2. The Influence of Prototype-based Strategy

There are several ways to learn DAG and hence, we further test a variant of iDAG that directly
optimizes the DAG module till it reaches the convergency within tolerance ∆LG ≤ 10−3 on the whole
dataset features at the end of each epoch (dubbed iDAG (Feature-based)). We train the models using
one Tesla V100 GPU respectively and evaluate the total training time. According to Table D.1, the

Table D.1. Training time and accuracy of different DAG optimization methods.

Method Ar Cl Pr Rw Avg Time (hour)

iDAG 68.2 57.9 79.7 81.4 71.8 8.46
iDAG (Feature-based) 63.2 55.9 77.7 79.4 69.0 24.32

variant that achieves competitive results is much slower than iDAG and difficult to tune due to the
indeterminacy of DAG convergence.

D.3. Runtime Complexity Analysis

Table D.2. Time costs (hours)

Time
ERM iDAG LDAG

8.26 8.46 0.07

In effect, iDAG is highly time-efficient. This is because the DAG constraint loss LDAG is applied
to updated prototypes post each mini-batch update, avoiding iterating the entire dataset. To substantiate
this, we provide theoretical and empirical evidence: (1) Theoretically: iDAG’s time complexity is
O(NM + Cd2), while ERM’s is O(NM). Here, N,M denote the number of samples and the cost of
updating the main network, and C ≪ N, d2 ≪ M represent the number of prototypes and parameters
of the DAG matrix. (2) Empirically: As shown in Table D.2, the total runtime on the OfficeHome
dataset reveals negligible time increases.

E. Implementation

In this section, we first provide the detail of augmented Lagrangian optimization of the acyclic con-
straint. Then, the network architecture details of iDAG. The hyperparameter selection criteria and
ranges are presented. The training settings are summarized. Our code is mainly built on the SWAD [8]
codebase with a hyperparameter searching strategy from DomainBed [18].



E.1. Acyclic Constraint

For achieving the acyclic constraint, following the concept that acyclic property is ensured by nodes
can not reach itself up to infinite steps on the DAG A ∈ Rd+1×d+1. There are multiple formulations of
this constraint as,

h(A) = Tr(eA⊙A)− (d+ 1) = 0, (69)

To incorporate this constraint into overall optimization, we rewrite the Eq. (6) and define the aug-
mented Lagrangian,

LG = Lrec + λh(A) +
c

2
|h(A)|2 + λl1|vec(A)|. (70)

where λ is the Lagrangian multiplier and c is the penalty weight. When c → +∞, minimizing the LG
is equivalent to the optimization on acyclicity solely. For stable training, the strategy is to progressively
increase the c. A typical effective rule for updating the λ and increasing the c is,

(A(t),θ(t)) = argmin
A,θ

L(A,θ, λ(t), c(t)), (71)

λ(t+1) = λ(t) + c(t)h(A(t)), (72)

c(t+1) =

{
ηc(t), if|h(A(t))| > α|h(A(k−1))|,
c(t), otherwise,

(73)

where t indicates the train epoch, α > 1 indicates the scale ratio constant for increasing the c depends
on whether optimized h(A(t)) less than a ratio of α. In general, we set η = 10 and α = 1/4.

To incorporate the DAG learning with overall networks, we create a DAG layer following [10] by
using two separate non-negative weight matrix A− and A+. Then rewrite the DAG learning objective
to

min
A
Lrec(A) + λl1|vec(A)| ⇔ min

A−≥0,A+≥0
Lrec(A

+ −A−) + λl11
⊤(A− +A+), (74)

where 1 is a vector of all ones.

E.2. Network Architecture for CMNIST

Closely following [3, 30], we build MLPs as the backbone network for CMNIST experiments. The
details of the model are summarized in Table E.1. Note the task on CMNIST is a binary classification
problem, therefore, we use the binary cross-entropy loss for the reconstructed element which corre-
sponds to the label.

Table E.1. Architecture details. BS: batch size, ReLU: Rectified Linear Unit.

Configuration Description Output

Input: x Observation images BS × 14 × 14 × 2
Flatten Flat the inputs BS × 392
Linear 390 neurons, ReLU BS × 390
Linear 390 neurons, ReLU BS × 390
DAGLinear 390 neurons BS × 390
Classifier classifier BS × 1

E.3. Network Architecture for Conventional Datasets

For conventional benchmarks, we utilize the pre-trained ResNet-50 as the backbone. Two classifiers
are used during training, one for classifying the reconstruction on the label element, and the other for
classifying the invariant features.



Table E.2. Hyperparameter search space comparison. U and list indicate Uniform distribution and random choice, respectively.

Condition Parameter Default value Random distribution

ResNet

batch size 32 32
learning rate 5e-5 10U(−5,−3.5)

dropout 0 [0.0, 0.1, 0.5]
weight decay 0 10U(−6,−2)

λmax 106 10U(5,8)

DAG sparsity loss weight λl1 10−3 U(0.0, 0.1)
reconstruction loss weight λ2 1.0 U(0.01, 2.0)
prototype update ratio γ 0.99 U(0.99, 0.999)
LCL−ν trade-off 1.0 U(0.1, 2.0)
LCL−µ trade-off 1.0 U(0.1, 2.0)

MLP

batch size 64 64
learning rate 1e-3 10U(−4,−2)

dropout 0 [0.0, 0.1, 0.5]
weight decay 0 10U(−6,−2)

λmax 108 10U(5, 9)

E.4. Data Augmentation Configuration.

In domain generalization, data augmentation plays an important role as a type of regularization
method. Despite the fact that there are many data augmentation methods, the results of the DG task
are promising. In order to ensure a fair comparison, we only utilize the data augmentations that are
contained in SWAD [8]. Our data augmentation process is based on SWAD’s technical specifications.
We randomly cropped the images to retain between 70% and 100%. The horizontal flipping and color
jittering were applied randomly with a magnitude of 0.3, and we also randomly apply a Grayscale on
the original image with 10% probabilities.

E.5. Optimization Details

We use the Adam optimizer for all experiments except the synthetic dataset which is optimized by
L-BFGS-B. For conventional big image datasets, all input images are resized to 224× 224. In addition
to the acyclic penalty applied on the adjacent matrix A we also employ additional parameter clamp
operators after every optimizer step. For both A− and A+, we clip them into range [0,+∞) and zero
their diagonal. The reason is to ensure the acyclicity and force of the adjacency matrix are learned by
reconstructing the element through elements other than itself.

For synthetic experiments, it is no need to learn an extra feature extraction network as factors are
already given by definition. Therefore, we utilize a more efficient optimizer L-BFGS-B by directly
indicating the parameter bounds. In practice, we utilize the L-BFGS-B optimizer implemented by Scipy
library.

E.6. Hyperparameter Search Protocol

We describe the hyperparameters selection range in Table E.2. The training is following the fully
automated sweep on all DG subtasks and model selection. We also searched the SWAD configuration
according to the original paper settings [8] in order to better cooperate with the SWAD technology.

E.7. Infrastructures

For CMNIST datasets, every experiment is conducted on a single NVIDIA RTX2080Ti, Python
3.9.13, PyTorch 1.10.0, Torchvision 0.11.0, and CUDA 11.2.

For big image datasets, every experiment is conducted on a single NVIDIA Tesla V100, Python
3.10.4, PyTorch 1.11.0, Torchvision 0.12.0, and CUDA 10.2.



F. Pseudo-Code of iDAG
We summarize the pseudo-code of our iDAG method in Algorithm 1.

Algorithm 1: Pseudo-code of iDAG (one epoch).
1 Input: Training dataset Dtr = {De

L}ne
e=1, featurizer ϕ, classifier ω, adjacent matrix A ∈ Rd+1×d+1, in-domain

class prototypes Bν = {νe
i } (1 ≤ i ≤ C, 1 ≤ e ≤ ne),cross-domain class prototypes Bµ = {µj}

(1 ≤ j ≤ C).
2 for iter = 1, 2, . . . , do
3 sample a mini-batch B from Dtr

// obtain pairwise total effect matrix

4 P tol =
[∑∞

k=0
1
k!
(A⊙A)k

]
= eA⊙A

// collect raw bottleneck features

5 Bz = {ze = ϕ(xe)|x ∈ B}
// collect invariant bottleneck features

6 By = {ze
y = [P tol

d+1,:d]
⊤ ⊙ ze|ze ∈ Bz}

7 for ze ∈ Bz,z
e
y ∈ By do

// momentum in-domain prototype updating

8 νe
c = Normalize(γνe

c + (1− γ)ze)
// momentum cross-domain prototype updating

9 µc = Normalize(γµc + (1− γ)ze
y)

// in-domain positive set generation

10 Pz(z
e) = {k′|k′ ∈ Bν , e

′ = e ∧ c′ = c}
// cross-domain positive set generation

11 Py(z
e
y) = {k′|k′ ∈ Bµ, c

′ = c}
12 end

// construct factors

13 V = {(ve
c = Concat(νe

c , y), y)|νe
c ∈ Bν , y = c}

// DAG reconstruction loss

14 Lrec =
∑

(v,y)∈V ∥[Av]:d − v:d∥+ ℓ
(
w⊤(A⊤

d+1 ⊙ v), y
)

// complete DAG loss

15 h(A) = Tr(eA⊙A)− (d+ 1)
16 LG = Lrec + λh(A) + c

2
|h(A)|2 + λl1|vec(A)|

// in-domain contrastive loss calculation

17 LCL-ν(ϕ; τ,Pz,Be = Be
ν ∪ Bz) =

1
|Bz |

∑
z∈Bz

{
− 1

|Pz(z)|
∑

k+∈P(z) log
exp(z⊤k+/τ)∑

k′∈Be(z) exp(z⊤k′/τ)

}
// cross-domain contrastive loss calculation

18 LCL-µ(ϕ; τ,Py, B̄ = Bµ ∪ By) =
1

|By|
∑

z∈By

{
− 1

|Py(z)|
∑

k+∈P(z) log
exp(z⊤k+/τ)∑

k′∈B̄(z) exp(z⊤k′/τ)

}
// classification loss calculation

19 Lcls = E(x,y)∈Dtr

[
ℓ(ω(ϕ(x)⊙ [P tol]⊤d+1,:d), y)

]
// network updating

20 minimize loss L = Lcls + LG + LCL-ν + LCL-µ

21 end
// update the Lagrangian parameter

22 λ(t+1) = λ(t) + c(t)h(A(t+1))

23 if |h(A(t))| > α|h(A(t−1))| then
24 c(t+1) = ηc(t)

25 else
26 c(t+1) = c(t)

27 end
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