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A. Overview

This supplementary material provides more details about

our method. In Sec. B, we compare our method with

other oversegmentation methods. In Sec. C, we provide

the details of our method, including visualization results,

limitations, and impacts. We also discuss future work. We

will release the code after the paper is published.

B. Oversegmentation Methods Comparison

B.1. Flexibility and Scalability

In order to show the advantages of our method, we com-

pare the proposed SuperLiDAR with advanced point cloud

oversegmentation methods, including SPG [9], SSP [7], and

SPNet [6]. The detailed comparison is shown in Tab. 1.

Specifically, we analyze three important factors, including

data preprocessing, end-to-end network, and superpoint size

control. SPG is an optimization based method that segments

superpoints through a greedy graph-cut algorithm [8]. The

greedy graph-cut algorithm uses different thresholds of

energy to segment superpoints, so it cannot effectively

control the minimum or maximum size of the superpoint.

SSP uses deep features to replace handcrafted features

used in SPG to generate superpoints. SSP is a two-

stage method, and cannot precisely control superpoint size.

Notably, SSP requires preparing data (constructing the

graph and computing handcrafted features) as the network

input in advance. SPNet follows the same data processing

procedure as used in SSP. SPNet is a clustering based

method that directly clusters superpoints from the input

point cloud. The number of superpoints is determined by

the initial seed points. The more numbers of seed points,

the smaller the superpoint size is. Thus, SPNet cannot

directly control the superpoint size. In this paper, the
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Method
No Data

End-to-End
Control Size

Preprocessing (Min & Max)

SPG [9] % % %

SSP [7] % % %

SPNet [6] % ! %

SuperLiDAR (ours) ! ! !

Table 1. Comparison of different oversegmentation methods.

proposed SuperLiDAR uses the breadth-first search (BFS)

to generate superpoints based on the learned low-level point

embeddings. During BFS, our method can control the

superpoint size by setting the minimum/maximum number

of points in each superpoint. Therefore, our method is

flexible to generate multi-scale superpoints. In addition,

our method does not require data processing and directly

takes raw point clouds as input to generate superpoints.

Thanks to the simple yet effective designs, our method can

be easily integrated into the current network to form an end-

to-end framework. Compared with other oversegmentation

methods, the proposed SuperLiDAR has good flexibility

and scalability.

B.2. Potential Applications

The proposed LiDAR point cloud oversegmentation

method SuperLiDAR is flexible and scalable and will allow

the application of a series of downstream tasks, such as 3D

segmentation, 3D detection, and 3D tracking. Furthermore,

the speed of our SuperLiDAR is 100× faster than other

oversegmentation methods.

In Fig. 1, we show the generated superpoints by our

SuperLiDAR on the validation set of SemanticKITTI. In

the figure, we cycle four categories, including pedestrians,

cyclists, traffic signs, and cars. It can be observed that

whether small objects (pedestrians, cyclists, and traffic

signs) or large objects (cars), our method can generate good

superpoints from the LiDAR point clouds. Essentially, the

superpoint is a representation of the point cloud. Superpoint

can adaptively capture the local geometric structures of

point clouds. Compared with hard local neighborhoods,



S
u

p
er

p
o

in
ts

G
ro

u
n

d
 T

ru
th

Pedestrian Cyclist Traffic sign Car

Figure 1. Visualization of superpoints generated by our SuperLiDAR on the validation set of SemanticKITTI. Note that the superpoints are

randomly colored (zoom in for a better view).

such as voxel based, ball query based, and k-NN based

neighborhoods, adaptive neighborhoods (i.e., superpoint)

are built along the geometric structures of the point cloud

surface. By applying superpoints, we can obtain more

discriminative local features, thereby improving the perfor-

mance of downstream tasks.

In this paper, we have demonstrated that using super-

points can effectively improve the performance of semantic

segmentation. In our SuperLiDAR, we use semantic labels

to formulate the local discriminative loss for learning low-

level point embeddings of point clouds. Note that the

semantic labels are used to learn low-level point embedding

rather than high-level semantic information. Thus, semantic

labels can be replaced by different supervision signals that

can distinguish different objects. In 3D detection, we can

formulate a new detection framework based on superpoints.

Specifically, we first extract superpoint-level features of

point clouds. Then, we use a foreground prediction branch

to filter out potential objects by masking background su-

perpoints. Finally, we can build a superpoint clustering

branch (e.g., cluster superpoints of car in Fig. 1) to obtain

proposals for classification and bounding box prediction.

Similarly, in 3D multi-object tracking, we can formulate a

new framework based on the tracking-by-detection scheme.

Specifically, we first detect objects in each frame, and then

track objects based on the similarity between superpoints in

adjacent frames. Notably, the proposed SuperLiDAR will

not heavily burden the downstream tasks due to the simple

yet effective design.

C. Our SuperLiDAR

C.1. More Results

Quantitative Results In the main paper, we show the

results of semantic segmentation on the online test sets

of SemanticKITTI [2] and nuScenes [3]. In Tab. 2, we

Method SemanticKITTI (mIoU) nuScenes (mIoU)

Baseline 65.6 77.8

SuperLiDAR (ours) 69.3 79.5

Table 2. Semantic segmentation results on the validation sets of

SemanticKITTI and nuScenes.

also provide the results of semantic segmentation on the

validation sets of SemanticKITTI and nuScenes. It can

be observed that our method can significantly improve the

baseline results.

In addition, we mainly focus on autonomous driving

applications, so we conduct experiments on outdoor Se-

manticKITTI and nuScenes. Our method can be applied

to indoor S3DIS [1] and ScanNet [4]. As shown in Tab. 3,

our method obtains better results compared to the previous

state-of-the-art method SPNet [6].

Method OOA BR BP F1

S3DIS Area 5

SPNet [6] 96.5 82.1 13.1 22.6

SuperLiDAR (ours) 97.3 83.3 14.0 23.9

ScanNet

SPNet [6] 96.4 79.1 13.5 23.1

SuperLiDAR (ours) 97.4 80.4 14.1 24.0

Table 3. Comparison results of generated superpoints on the

S3DIS and ScanNet.

Ablation Studies Here we provide more ablation stud-

ies of oversegmentation and semantic segmentation on the

validation set of SemanticKITTI [2].

In the LiDAR point grouping algorithm, the thresh-

old γ of distance constraint in breadth-first search (BF-

S) is an important parameter. In Tab. 4, we show the

oversegmentation results under different thresholds γ ∈



Setting OOA BR BP F1

γ = 0.5 95.80 62.08 22.15 32.65

γ = 1.0 96.01 65.11 21.02 31.78

γ = 1.5 (default) 96.21 65.52 20.52 31.25

γ = 2.0 96.30 65.49 19.60 30.17

γ = 2.5 96.23 65.91 18.42 28.79

K = 1 94.81 57.72 17.98 27.41

K = 3 95.67 63.13 18.78 28.94

K = 5 (default) 96.21 65.52 20.52 31.25

K = 7 96.13 65.74 20.38 31.11

K = 9 96.41 65.27 20.09 30.72

Table 4. Oversegmentation results on the validation set of

SemanticKITTI under different settings.

{0.5, 1.0, 1.5, 2.0, 2.5}. It can be observed that when γ is

greater than 1.5m, we can obtain higher OOA, which mea-

sures the theoretical upper bound of semantic segmentation

using superpoints. Considering the performance of other

metrics BR, BP, and F1, we set γ = 1.5m in this paper.

In the superpoint refinement module, the hyperparameter

K indicates the number of candidate superpoints that are

used to learn point-superpoint affinity. In Tab. 4, we show

the oversegmentation results at different values of K. Note

that K = 1 means that we directly assign the point to

the nearest superpoint in the coordinate space. It can be

observed that as the value of K increases, the performance

of OOA increases. In addition, BR, BP, and F1 achieve the

best results when the value of K is about 5. It is worth

noting that as the value of K increases, the computational

cost gradually increases. To balance the computational cost

and performance, we set K = 5 in this paper.

In LiDAR semantic segmentation, we propose a multi-

scale superpoint aggregation module and integrate it with

our LiDAR oversegmentation network to form an end-to-

end LiDAR semantic segmentation framework. In Tab. 5,

we show the ablation study of semantic segmentation with

different numbers of superpoint scales. Note that differ-

ent scales of superpoints are generated by adjusting the

minimum size (Nmin) and maximum size (Nmax) in the

LiDAR point grouping algorithm. It can be observed that

our method achieves the best results when using three scales

of superpoints (“SuperLiDAR (scale num. = 3, default)”).

Ideal superpoints are located inside the instance, but

not cross different instances. Since the semantic seg-

mentation loss Lce cannot distinguish different instances,

it could generate cross-instance superpoints, resulting in

lower performance. In contrast, the proposed local dis-

criminative loss Lsp can identify different instances by

capturing the discriminability of local geometric structures,

thereby generating high-quality superpoints. As a result,

we conduct ablation studies on the validation set of Se-

manticKITTI. The OOA/BR/BP/F1 are 95.0/63.6/18.1/28.1

Setting mIoU

SuperLiDAR (scale num. = 1) 67.8

SuperLiDAR (scale num. = 2) 68.5

SuperLiDAR (scale num. = 3, default) 69.3

SuperLiDAR (scale num. = 4) 69.0

Table 5. Semantic segmentation results on the validation set of

SemanticKITTI under different settings.

(Lce) and 96.2/65.5/20.5/31.2 (Lsp).

Visualization Results Here we provide more visualiza-

tion results of oversegmentation and semantic segmentation

to show the effectiveness of the proposed SuperLiDAR.

In Fig. 2, we show the visualization results of super-

points before applying the superpoint refinement module.

In the figure, the points with black color are usually the

boundary points (in red circles) that are not assigned to the

superpoints in LiDAR point grouping algorithm. After ap-

plying the superpoint refinement module, it can be observed

that these black points can be accurately assigned to the

corresponding superpoints.

In Figs. 3 and 4, we show the results (i.e., superpoints)

of LiDAR point cloud oversegmentation on the validation

sets of SemanticKITTI [2] and nuScenes [3], respectively.

In the figures, the superpoints are randomly colored. Please

zoom in for a better view. It can be observed that compared

with SPG [9], SSP [7], and SPNet [6], our SuperLiDAR can

generate high-quality superpoints with clear boundaries.

In Figs. 5 and 6, we show the results of semantic

segmentation on the validation sets of SemanticKITTI and

nuScenes, respectively. From the error maps, it can be

observed that using superpoints can effectively improve the

performance of semantic segmentation.

C.2. Limitations and Impacts

Limitations The proposed SuperLiDAR is a supervised

method that requires annotated labels (e.g., semantic labels

and instance labels) to train the network. Therefore, it

can be integrated into downstream tasks (e.g., semantic

segmentation and instance segmentation) to form a multi-

task framework in a supervised manner. However, for unsu-

pervised, semi-supervised, and self-supervised downstream

tasks, such as unsupervised point cloud correspondence,

weakly supervised point cloud semantic segmentation and

3D detection, the proposed method is limited to these tasks.

Impacts The proposed method can be applied to self-

driving cars and transportation. For self-driving cars, some

objects (such as cars, trucks, and pedestrians) on the road

may be incorrectly recognized by the proposed method.

These issues require further research and consideration

when building upon this work in self-driving cars.

Ethical Consideration This work is able to facilitate
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Figure 2. Visualization of superpoints generated by our method on the validation set of SemanticKITTI. Note that the superpoints are

randomly colored (zoom in for a better view). The points with black colors are usually the boundary points (in red circles) that are not

assigned to the superpoints in the LiDAR point grouping algorithm.

the development of certain applications. For example,

it can help domestic robots avoid potential obstacles in

indoor environments. In assisted driving, it can help the

driver recognize potential objects that may affect driving

in advance. In addition, all datasets used in this paper are

publicly available as academic research, and the evaluation

metrics used in the experiments are also standard. For

negative outcomes, it depends on a specific task and the

criteria for assessing positive and negative.

C.3. Future Work

In future, we consider utilizing the masked auto-encoder

(MAE) [5] to improve the proposed SuperLiDAR to a

self-supervised method. In this way, it can be potentially

applied to a wider range of tasks, such as supervised, self-

supervised, and unsupervised tasks in 3D scene understand-

ing.
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Figure 3. Visualization of superpoints generated by different methods on the validation set of SemanticKITTI. Note that the superpoints

are randomly colored (zoom in for a better view).
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Figure 4. Visualization of superpoints generated by different methods on the validation set of nuScenes. Note that the superpoints are

randomly colored (zoom in for a better view).
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Figure 5. Visualization of semantic segmentation on the validation set of SemanticKITTI. Note that the superpoints are randomly colored

(zoom in for a better view).



Error by Baseline Error by SuperLiDAR Superpoint Ground Truth

Figure 6. Visualization of semantic segmentation on the validation set of nuScenes. Note that the superpoints are randomly colored (zoom

in for a better view).
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