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Abstract

This is a supplementary material which provides addi-
tional details for the paper.

A. Implementation Details
A.1. Experiment settings

Training. For the pre-training stage, we train on 4 RTX
3090 GPUs with a batch size of 16 and 8 for SECOND-IoU
and PV-RCNN, respectively. Then, following the original
model training settings, we use epochs 80, and 30 for KITTI
dataset and Waymo dataset, respectively. Especially, pre-
training on small amounts of KITTI labeled data 2%, we
lengthen the epoch to 120 for the model to converge. For the
semi-supervised learning stage, we train with a batch size of
32 (16 labeled + 16 unlabeled, 4 GPUs) and 16 (8 labeled
+ 8 unlabeled, 4 GPUs) for SECOND-IoU and PV-RCNN,
respectively. We set the ratio of unlabeled data to twice
that of labeled data in domain adaptation experiments. The
learning rate is initialized as the value of the original model
usage and updated by cosine annealing strategy.

Table 1: Waymo [7], KITTI [3], and Lyft [6] dataset
overview. † and ∗ indicate obtaining information from [10]
and [12], respectively.

Waymo KITTI Lyft

LiDAR Type 64-beam 64-beam 64-beam
Beam Angles † [-18.0◦, 2.0◦] [-23.6◦, 3.2◦] [-29.0◦, 5.0◦]

Points per Scene ∗ 160,139 118,624 69,175
Training Frames 158,081 3,712 18,900

Validation Frames 39,987 3,769 3,780
Night / Rainy Yes / Yes No / No No / No

Location USA Germany USA

Dataset and Source Code License. We implement our
UpCycling based on OpenPCDet [8] (v0.5.1) which is li-
censed under the Apache License 2.0. According to https:
//paperswithcode.com/datasets, the license of

Waymo dataset [7] and KITTI dataset [3] is the custom (non-
commercial) and the CC BY-NC-SA 3.0, respectively, and
the license of Lyft dataset [6] is unknown. The details of
each datasets are in Table 1.

A.2. Architecture details – 3D backbone network

In this paper, the 3D backbone network of SECOND [11]
(see Table 2) is used for generating the grid-type feature
data in PV-RCNN and SECOND-IoU experiments. Voxel
Feature Extractor (VFE) converts the point cloud data into
voxel format covering the entire point cloud range. After that,
the output of VFE goes through the SparseConv layers [4]
where each Conv layer contains both batch normalization and
ReLU, which is a non-linear function. Lastly, the output of
SparseConv layers becomes the grid-type feature data which
UpCycling utilizes. On the other hand, the 3D backbone
network of PV-RCNN additionally generates the set-type
features from Voxel Set Abstraction (VSA) (see Table 3). In
this process, PV-RCNN samples a fixed number of keypoints
from raw points following the Farthest-first rule. After that,
set abstraction modules create voxel-wise features from each
layer in VFE corresponding to keypoint positions. Finally,
to generate the final form of set-type features, VSA Point
Feature Fusion module concatenates the features from the
set abstraction modules to the accurate keypoint positions.

A.3. Implementation Details for SECOND-IoU
based 3DIoUMatch

We basically follow and reuse the official codes from the
SOTA schemes for comparison except for 3DIoUMatch [9].
3DIoUMatch method uses IoU-guided NMS modules for
filters pseudo labels. However, the authors did not imple-
ment 3DIoUMatch in SECOND-IoU, we have implemented
3DIoUMatch on SECOND-IoU to analyze its effectiveness
compared with UpCycling.

According to 3DIoUMatch, among the pseudo labels fil-
tered according to the module in IoU, only terms that help
improve box regression are selectively included in the loss.
In the first attempt, the experiment † case in Table 4 is con-
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Table 2: 3D backbone network architecture generating grid-type feature data.

Layers BACKBONE Network Output size
VFE Mean VFE 4×41×1600×1408

SparseConv Layers

conv input 4×3×3×3, 16, padding 1,1,1 16×41×1600×1408
conv 1 16×3×3×3, 16 16×41×1600×1408

conv 2
16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×3×3×3, 32
32×3×3×3, 32

32×21×800×704

conv 3
32×3×3×3, 64, stride 2,2,2, padding 1,1,1

64×3×3×3, 64
64×3×3×3, 64

64×11×400×352

conv 4
64×3×3×3, 64, stride 2,2,2, padding 0,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×200×176

conv out 64×3×1×1, 128, stride 2,1,1 128×2×200×176

Table 3: 3D backbone network architecture generating set-type feature data.

Layers BACKBONE Network Output size
Key Point Sampling Farthest Point Sampling 4×2048

VoxelSetAbstraction
(VSA) Layers

SA raw
radius 0.4

4×1×1, 16
16×1×1, 16

radius 0.8
4×1×1, 16

16×1×1, 16
32×2048

SA pv1
radius 0.4

19×1×1, 16
16×1×1, 16

radius 0.8
19×1×1, 16
16×1×1, 16

32×2048

SA pv2
radius 0.8

35×1×1, 32
32×1×1, 32

radius 1.2
35×1×1, 32
32×1×1, 32

64×2048

SA pv3
radius 1.2

67×1×1, 64
64×1×1, 64

radius 2.4
67×1×1, 64
64×1×1, 64

128×2048

SA pv4
radius 2.4

67×1×1, 64
64×1×1, 64

radius 4.8
67×1×1, 64
64×1×1, 64

128×2048

SA BEV Bilinear Interpolation 256×2048

VSA Point Feature Fusion Concat [ fraw, fpv1, fpv2, fpv3, fpv4, fBEV ] 640×2048
Linear Layer 640, 128 128×2048

Table 4: Partial-label scenario results with 2% of labeled
data in the KITTI dataset. 3DIoUMatch † indicates the first
attempt experiment of not applying selective supervision of
box regression loss term.

AP3D
2%

Easy Mod Hard

SECOND-IoU

Baseline 56.69 44.11 37.19
3DIoUMatch † 29.12 23.03 20.33
improved (%) -48.64 -47.78 -45.32
3DIoUMatch 63.57 49.58 43.00
improved (%) 12.13 12.39 15.62

ducted, including both the box regression and cls loss value
from the RPN module among the pseudo labels extracted
from SECOND-IoU. The performance, however, is severely
degraded compared with the baseline model’s performance.
Thus, as following implementation of the 3DIoUMatch con-
cept, we select only the loss useful for box regression among
RPN module loss terms. It could be confirmed through the
results of 3DIoUMatch from Table 4 that the baseline model

performance is well improved by the correct loss selection.
Through this, we could judge that the implementation of
SECOND-IoU based 3DIoUMatch is reasonable.

A.4. Implementation of Inversion Attack

The research on inversion attacks that aim to restore orig-
inal data from feature data has mainly focused on 2D im-
ages. Several studies, such as those referenced in [1, 2, 13],
have proposed different inversion attack models based on
convolutional neural networks (CNNs) and have shown im-
provements in performance by using prediction results and
explanations. Additionally, an inversion attack model that
utilizes a GAN generator and 1x1 convolution has been pro-
posed in [5]. However, to the best of our knowledge, research
on inversion attacks for 3D point clouds remains limited. For
this purpose, we employ the inversion attack model utilizing
the decoder method [2], which is commonly used to assess
the invertibility of a model composed of convolutional lay-
ers [1, 13].

We have developed the inversion attack models that re-



Table 5: 3D reconstructor network architecture from xconv 1.
Layers RECONSTRUCTOR Network Output size
INPUT xconv 1 16×41×400×352

Conv3d Layers
conv 1 16×3×3×3, 16, padding 1,1,1 16×41×400×352
conv 2 16×3×3×3, 16, padding 1,1,1 16×41×400×352
conv 3 16×3×3×3, 16, padding 1,1,1 16×41×400×352

ConvTranspose3d Layers upconv 1 16×3×3×3, 4, padding 1,1,1 4×41×400×352

Table 6: 3D reconstructor network architecture from xconv 3.
Layers RECONSTRUCTOR Network Output size
INPUT xconv 3 64×11×100×88

Conv3d Layers
conv 1 64×3×3×3, 64, padding 1,1,1 64×11×100×88
conv 2 64×3×3×3, 64, padding 1,1,1 64×11×100×88
conv 3 64×3×3×3, 64, padding 1,1,1 64×11×100×88

ConvTranspose3d Layers
upconv 1 64×3×3×3, 32, stride 2,2,2, padding 1,1,1/0,1,1 32×21×200×176
upconv 2 32×3×3×3, 16, stride 2,2,2, padding 1,1,1/0,1,1 16×41×400×352
upconv 3 16×3×3×3, 4, padding 1,1,1 4×41×400×352

Table 7: 3D reconstructor network architecture from xconv out.
Layers RECONSTRUCTOR Network Output size
INPUT xconv out 128×2×50×44

Conv3d Layers
conv 1 128×3×3×3, 128, padding 1,1,1 128×2×50×44
conv 2 128×3×3×3, 128, padding 1,1,1 128×2×50×44
conv 3 128×3×3×3, 128, padding 1,1,1 128×2×50×44

ConvTranspose3d Layers

upconv 1 128×5×3×3, 64, stride 2,1,1, padding 1,1,1 64×5×50×44
upconv 2 64×5×3×3, 64, stride 2,2,2, padding 1,1,1/0,1,1 64×11×100×88
upconv 3 64×3×3×3, 32, stride 2,2,2, padding 1,1,1/0,1,1 32×21×200×176
upconv 4 32×3×3×3, 16, stride 2,2,2, padding 1,1,1/0,1,1 16×41×400×352
upconv 5 16×3×3×3, 4, padding 1,1,1 4×41×400×352

construct the raw point clouds from the intermediate features
at the 1st, 3rd, and 5th convolution layers in 3D backbone
network in Table 2, following the decoder method [2]. The
inversion attack model structures for reconstructing features
from the 1st, 3rd, and 5th layers are consistent with the struc-
tures presented in Tables 5, 6, and 7, respectively. The initial
part of each inversion attack model consistently consists of
three convolution layers. After that, the number of trans-
posed convolution layers in the model corresponds to the
count of layers that generate the input feature data.

To reconstruct the point clouds from input features for
each dataset (KITTI, Waymo, and Lyft), we have developed
independent inversion attack models for every dataset and
followed the training settings in the decoder method [2].

B. Supplementary Evaluation

In this section, we provide additional supplementary ex-
periment results that reinforce the arguments of this paper.

B.1. Analysis on 3D Scene Feature Augmentation

In the main paper, Section 4 displays the error bars for
the case when compared with a grid-type feature. Further
analysis was conducted on 3D scenes with set-type features

as follows:
Comparing point set features directly as with grid-type

features is not accurate, because raw-point augmentation
influences point sampling. This means that feature augmen-
tation is carried out based on point samples that differ from
those used when raw-point augmentation is applied. To
address this, we undertook additional experiments by com-
paring the nearest point features in pairs. As illustrated in
Figure 4, the RMSE results are 1.605@FLIP, 1.297@ROT,
and 0.906@GT, which confirms a trend similar to that ob-
served with grid-type features.

B.2. Privacy Protection

B.2.1 Feature data produced from the 3D object detec-
tion network.

Figure 5 shows the grid-type feature’s activation heatmaps
and set-types feature’s positions corresponding to GTs at the
raw-point data. In UpCycling, the state of the feature-level
data after passing the 3D Backbone networks is very coarse.
UpCycling uses these de-identified feature-level data for SSL
of 3D object detection. In order to extract identifying infor-
mation from this de-identified data, inversion attacks must be
employed. We will discuss the attempts to reconstruct data



(a) Original raw-point scene (b) Restoration from the 1st layer (c) Restoration from the 3rd layer (d) Restoration from the 5th layer,
same as UpCycling

Figure 1: Results of inversion attack for the 3D backbone model of SECOND-IoU and PV-RCNN. The example 3D point
cloud scene is in KITTI.

(a) Original raw-point scene (b) Restoration from the 1st layer (c) Restoration from the 3rd layer (d) Restoration from the 5th layer,
same as UpCycling

Figure 2: Results of inversion attack for the 3D backbone model of SECOND-IoU and PV-RCNN. The example 3D point
cloud scene is in Waymo.

(a) Original raw-point scene (b) Restoration from the 1st layer (c) Restoration from the 3rd layer (d) Restoration from the 5th layer,
same as UpCycling

Figure 3: Results of inversion attack for the 3D backbone model of SECOND-IoU and PV-RCNN. The example 3D point
cloud scene is in Lyft.

0.0 0.5 1.0 1.5 2.0 2.5
Error (RMSE)

0.906 1.297 1.605

GT sampling Rotation Flip

Figure 4: RMSE between raw- and set-type feature-level
augmentations of the entire KITTI training dataset. Box
range covers the first quartile to the third quartile and the
mark ‘×’ indicates the mean value.

via inversion attacks in the following section. Additionally,
since a regular detection pipeline with the 3D scene naturally
produces an unlabeled intermediate feature, UpCycling elim-
inates the need for extra AV-side computation (e.g., local
training) or server-side annotation effort.

B.2.2 Restored point cloud scene using the inversion
attack.

We perform an inversion attack on the 3D backbone net-
work in SECOND-IoU and PV-RCNN. The 3D point cloud
scenes in Figures 1-3(a) originate from the KITTI, Waymo,
and Lyft datasets, respectively. Figures 1-3(b)-(d) present
the restoration results for intermediate features at three dif-
ferent convolutional layers of the backbone network: 1st,
3rd, and 5th (last) layers, respectively. Although the point
cloud restored from the first layer is relatively similar to the
original scene, it becomes considerably different when ap-
plied to features from deeper layers in all cases. We confirm
that intermediate feature data generated from the deepest
layer utilized by UpCycling in all datasets, including KITTI,
Waymo, and Lyft, makes it impossible to accurately recon-



Table 8: Effects of feature augmentation schemes in the do-
main adaptation scenario with the same settings as Sections
5.2 and 5.4

Dataset Method SECOND-IoU (Closed Gap[%])
APBEV AP3D

KITTI

Baseline 54.14 (0.00) 10.16 (0.00)
Flip(w/ SN) 76.68 (62.23) 48.73 (53.67)

Noise(w/ SN) 81.46 (75.43) 51.21 (57.12)
RS(w/ SN) 78.59 (67.50) 46.52 (50.61)

Rotation(w/ SN) 77.98 (65.83) 44.25 (47.44)
UpCycling (w/ SN) 84.12 (82.77) 67.65 (80.00)

Oracle 90.36 (100.0) 82.02 (100.0)

struct the original scene.

B.3. Effect of Feature Augmentation Schemes in
Domain Adaptation

In Section 5.2, we investigate feature augmentation by
evaluating the superiority of F-GT, which is utilized for
UpCycling, to other augmentation schemes (e.g. Flip, Noise,
RS, and Rotation) in a partial-label scenario. Further, we
investigate the superiority of UpCycling to other feature aug-
mentation schemes in the domain adaptation scenario with
the same settings as Sections 5.2 and 5.4.

In this experiment, Baseline evaluates the baseline model
pre-trained with Waymo dataset directly in target domain
(KITTI) and Oracle adapts the model with fully supervised
learning in the target domain, which provide the lower- and
upper-bound performance, respectively. For feature-level
augmentations, we adopts Flip, Noise, RS, and Rotation
described in Section 5.2. We utilize SECOND-IoU and adopt
SN option for adaptation to KITTI domain since object sizes
in KITTI are different from those in Waymo.

Table 8 performs the same comparison in the domain
adaptation scenario described in Section 5.4, showing each
scheme’s APBEV, AP3D performances and its relative po-
sition between Baseline (0) and Oracle (100). The results
show that our UpCycling provides the best performance in
all cases.

B.4. Other Class Detection Results

We report per-class average precision on other classes of
the KITTI dataset in Table 9. We use the same settings as
in Sections 5.5. The experiment using a 10% partial-label
scenario on KITTI training data is essential to understand
UpCycling’s effectiveness to the Pedestrian class as well as
the Car class. As shown in Table 9, UpCycling achieves to
improve the detection accuracy in other classes significantly,
regardless of the class, model, and task difficulty.
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