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1. Details of Experiments Setup

This section provides information on datasets and mod-
els used in the main paper with hyper-parameters of the
training.

1.1. Datasets

ImageNet-1K. ImageNet-1K [12] is the popular large-
scale classification benchmark dataset, and the license is
custom for research and non-commercial. ImageNet-1K
consists of 1.28M training and 50K validation images with
1K classes. We use the training and the validation sets to
train and evaluate architectures, respectively.

ImageNet-V2. ImageNet-V2 [11] is new test data for
the ImageNet benchmark. Each of the three test sets
in ImageNet-V2 comprises 10,000 new images. After a
decade of progress on the original ImageNet dataset, these
test sets were collected. This ensures that the accuracy
scores are not influenced by overfitting and that the new test
data is independent of existing models.

ImageNet-ReaL. ImageNet-ReaL [2] develops a more
reliable method for gathering annotations for the ImageNet
validation set and is under the Apache 2.0 license. It re-
evaluates the accuracy of previously proposed ImageNet
classifiers using these new labels and finds their gains are

smaller than those reported on the original labels. There-
fore, this dataset is called the “Re-assessed Labels (ReaL)”
dataset.

ADE20K. ADE20K [18, 19] is a semantic segmentation
dataset, and the license is custom research-only and non-
commercial. This contains over 20K scene-centric images
that have been meticulously annotated with pixel-level ob-
jects and object parts labels. There are semantic categories,
which encompass things like sky, road, grass, and discrete
objects like person, car, and bed.

ImageNet-A. ImageNet-A [8] is a set of images labeled
with ImageNet labels that were created by collecting new
data and preserving just the images that ResNet-50 [7] mod-
els failed to categorize properly. This dataset is under the
MIT license. The label space is identical to ImageNet-1K.

VQAv2. VQA [1] dataset contains open-ended questions
about images. These questions require an understanding of
vision, language, and commonsense knowledge to answer.
VQAv2 [5] is the second version of the VQA dataset, which
contains 204K COCO images.

1.2. Models

Dosovitskiy et al. [4] have proposed ViT-B. Touvron
et al. [13] have proposed tiny and small ViT architectures
named as ViT-Ti and ViT-S. The ViT architecture is similar
to Transformer [14] but has patch embedding to make to-
kens of images. Specifically, ViT-Ti/-S/-B have 12 depth
layers with 192, 384, and 768 dimensions, respectively.
Heo et al. [9] have proposed a variant of ViT by reducing the
spatial dimensions and increasing the channel dimensions.
ViTs consist of a patch embedding layer, multi-head self-
attention (MSA) blocks, multi-layer perceptron (MLP) blocks,
and layer normalization (LN) layers. Our module is the
modification of MLP block. Our module only requires 1 line
modification at the end of the MLP layer.

1.3. Hyper-parameters

Touvron et al. [13] have proposed data-efficient train-
ing settings with strong regularization, such as MixUp [16],
CutMix [15], and random erasing [17]. We adopt the train-
ing setting of DeiT [13] and denote ViT-Ti/-S/-B with CB

module. We do not use repeated augmentation for ViT-Ti/-
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Figure S1. Training curve of ViT-S with and without CB mod-
ule. CB increases the accuracies across epochs and decreases both
training and evaluation losses more. CB improves the capacity of
ViT.

S with ours. For ViT-B with ours, we increase the warmup
epochs from 5 to 10 and the drop path. In distillation, we
use the same hyper-parameters except for the drop path of
ViT-B with ours to 0.2.

2. Additional Experiments
This section provides additional experiments we cannot

report due to page limitations.

2.1. Training Curve

We draw the training curve to see if CB improves the ca-
pacity and convergence of ViTs. As shown in Fig. S1, CB in-
creases the top-1/-5 accuracies across epochs and decreases
both training and evaluation losses more. The curves show
that CB improves the capacity of ViTs.

2.2. Distilled Performance

We follow the specification of ViT-Ti/-S from DeiT [13].
As shown in Table S1, our modules CB and CBS improve
performance compared to the distilled ViTs consistently.
Table S2 shows the results of the robustness benchmark in
ViT-S⚗. CBS increases 0.5, 1.1, and 2.2 of Occ, ImageNet-A,
and FGSM, respectively. CB does 0.5, 2.1, and 4.7, respec-
tively.

2.3. Architecture generalizability.

To show further applicability of our module, We com-
pare PVT, LocalViT-Ti, PVTv2, and Swin trained w/ and
w/o ours on ImageNet-1K; we set the default epochs to

(a) He et al. [6]

(b) Ma et al. [10]

Figure S2. Visualization from He et al. [6] and Ma et al. [10]. (a)
He et al. [6] visualized the attention of DeiT-B 12 heads in shallow
and deeper layers. (b) Ma et al. [10] visualized the attention of
ViTs given the query point.

120.1 PVT uses a pyramid structure as CNN backbones,
LocalViT-Ti puts the convolution layer (local operation),
PVTv2 is the improved version of the PVT placing con-
volutional layer, and Swin employs a hierarchical structure
and local attention. Table S3 shows that our module consis-
tently improves performance.

2.4. Discussion on Attention Visualization

The visualization of the attention map is not the first at-
tempt. As shown in Fig. S2, He et al. [6] and Ma et al. [10]
visualized the attention across layers or architectures. He et
al. [6] reported that the deeper layers attend the dense global
regions, and shallow layers attend the sparse local regions
in DeiT-B. Ma et al. [10] reported that the attention weights
are sparse in DeiT-B compared to DeiT-B-Distill. Despite
the fact that they analyze the same architecture, DeiT-B,
He et al. and Ma et al. argued the different statements on
sparsity. They use different criteria depending on what they
want to compare in relative ways. Thereby, it has been open
discussion in the community about sparsity characteristics
of attention maps in Transformers due to those subjective
visualization-based analyses.

Based on the visualization, the statements of He et al.
and Ma et al. are conditional on the reference of an attention
visualization. These conditional statements can be changed
by choosing a different reference; thus, our observation is
not contrary to theirs. To compare more general ways, we
employ an objective measure, i.e., entropy measure; high
entropy implies dense interactions and vice versa. It is our
contribution. Our entropy analysis in Sec. 3 supports the

1We set 150 epochs for LocalViT.



Architecture # Params [M] FLOPs [G] Acc@1 [%] Acc@5 [%] IN-V2 [%] IN-ReaL [%]

ViT-Ti⚗ 5.9 1.3 74.5 91.9 62.4 82.1
+ CB 5.9 1.3 74.7 92.3 62.5 82.3
+ CBS 5.9 1.3 75.3 92.5 63.4 82.8

ViT-S⚗ 22.4 4.6 81.2 95.4 69.8 86.9
+ CB 22.4 4.6 81.3 95.6 70.2 87.0
+ CBS 22.4 4.6 81.6 95.6 70.9 87.3

ViT-B⚗ 87.3 17.6 83.4 96.4 72.2 88.1
+ CB 87.3 17.6 83.5 96.5 72.3 88.1
+ CBS 87.3 17.6 83.6 96.5 73.4 88.3

Table S1. ImageNet-1K performance. We train vision transformer architectures [4, 13] with CB and CBS and evaluate the accuracy on
ImageNet-1K [3], ImageNet-V2 [11], and ImageNet-ReaL [2]. Bold is the best number at each row. Our module improves all the metrics
incurring negligible extra computational costs.

Architecture Occ [%] ImageNet-A [%] FGSM [%]

ViT-S⚗ 74.6 21.5 11.8
+ CBS 75.1 22.6 13.0
+ CB 75.1 23.6 15.5

Table S2. Robustness evaluation. We evaluate ViT-S⚗ with CB

and CBS on center occlusion (Occ), ImageNet-A, and fast sign gra-
dient method (FGSM) attack. Ours shows improved robustness
across the board against ViT-S⚗.

Model Hierarchy Local ACC@1[%]

PVT-S ✓ 76.7
+ Ours ✓ 77.3

LocalViT-Ti ✓ 69.4
+ Ours ✓ 72.5

PVTv2-B1 ✓ ✓ 76.4
+ Ours ✓ ✓ 76.5

Swin-Ti ✓ ✓ 79.3
+ Ours ✓ ✓ 79.5

Table S3. ImageNet-1K results with hierarchical ViTs. We fur-
ther report the results of training on ImageNet-1K.

Architecture Accuracy

ViT-S 74.73
+ CB 75.43

Table S4. Accuracy on CIFAR-100. We train ViT-S from scratch
on CIFAR-100 dataset. CB increases the accuracy by 0.7%p.

visualization (Fig. 10), where CB lowers the entropy and
helps MSA attend to more informative signals.

2.5. Classification on CIFAR-100

We train ViT-S from scratch on CIFAR-100. CIFAR-100
consists of 50,000 training and 10,000 validation images
with 100 classes. Table S4 shows the accuracy on CIFAR-
100. CB improves the performance by 0.7%p more.

2.6. Discussion on Position of CB

We conclude the position of CB to the end of the MLP

block. We provide our intuition and discussion about Table
3-(b), which shows performance depends on CB position in
the MLP block.
Gradient signals. We think that the gradient signals
are dependent on the position of CB. For simplic-
ity, we assume a single layer composed of the MSA

and MLP block. Let the MLP layer consist as follows:
< Front > −FClayer− < Mid > −FClayer− < End >.

• Case 1, Front: If CB is located at Front, the subsequent
weights in the corresponding MLP block cannot receive
the gradient signals during training.

• Case 2, End: If CB is located at End, the preceding weights
in the MLP block are updated by the gradient signals by
uniform attention.

Why is the improvement of Mid and End similar? There
is no non-linear function (e.g., GELU) between Mid and
End positions. Since uniform attention is the addition of a
globally averaged token, the output is identical wherever CB
is located at Mid and End. Therefore, the accuracy of both
positions is similar. Nonetheless, CB at End achieves a bit
higher top-5 accuracy than CB at Mid. As aforementioned,
we suspect the End position provides the gradient induced
by uniform attention to weights of the MLP block.

2.7. Utilizing the Class Token

Since the class token evolves by interacting with entire
tokens for tasks, we think that the class token could be uti-



Module
Position

FLOPs [M] Acc@1 [%] Acc@5 [%]
MLP MSA

ViT-S ✗ ✗ 1260 79.9 95.0

+CB
✓ ✗ +0.9 80.5 95.3
✗ ✓ +0.9 80.1 95.0
✓ ✓ +1.8 80.1 95.0

+CBgate
✓ ✗ +0.9 80.4 95.1
✗ ✓ +0.9 80.0 95.0
✓ ✓ +1.8 80.0 95.0

+CBhybrid
✓ ✗ +1.8 80.5 95.0
✗ ✓ +1.8 80.4 95.3
✓ ✓ +3.6 - -

Table S5. Performance of ViT-S with CB, CBgate, and CBhybrid.
We train ViT-S with CB, CBgate, and CBhybrid on ImageNet-1K
training set and evaluate top-1/-5 accuracies on the validation set.
We vary the position of our modules at MLP, MSA, and both. Bold
is the best number at each row.

Module
Position

FLOPS [M] Acc@1 [%] Acc@5 [%]
Front Mid End

ViT-S ✗ ✗ ✗ 1260 79.9 95.0

+CB
✓ ✗ ✗ +0.9 79.9 94.8
✗ ✓ ✗ +3.6 80.5 95.2
✗ ✗ ✓ +0.9 80.5 95.3

+CBgate
✓ ✗ ✗ +0.9 80.3 94.9
✗ ✓ ✗ +3.6 80.2 95.1
✗ ✗ ✓ +0.9 80.4 95.1

+CBhybrid
✓ ✗ ✗ +1.8 80.5 95.0
✗ ✓ ✗ +7.3 80.1 95.1
✗ ✗ ✓ +1.8 80.3 95.0

Table S6. Performance of ViT-S with different po-
sitions in MLP block. MLP has following schematic:
< Front > −FClayer− < Mid > −FClayer− < End >. We
insert CB, CBgate, and CBhybrid at Front, Mid, and End and evalu-
ation on ImageNet-1K. Bold is the best number at each row.

lized to complement spatial interactions of attention. We
propose two additional baselines employing the class token.

The first one is the multiplication of the class token
with each visual token, similar to the gating mechanism.
We denote the first as CBgate and formalize it as follows:
CBgate(xi) = xi(x0+1) for every token i, where x0 is the
class token and 1 is one vector. The second one is the com-
bination of the class and average token denoted as CBhybrid:
CBhybrid(xi) = xix0 + CB(xi) for every token i. These
modules are also parameter-free and computation efficient.

Firstly, we analyze the positions of MLP and MSA; we lo-
cate the modules at the end of blocks. Table S5 lists FLOPs
and validation accuracy of MLP and MSA. Both CBgate and
CBhybrid improve the top-1 accuracy regardless of positions
except for the failure case of CBhybrid at both MLP and MSA

layers. These modules have the best top-1 accuracy at MLP,
consistent with our CB module.

We investigate different positions in an MLP layer with
CBgate and CBhybrid. Table S6 lists FLOPs and valida-
tion accuracies of Front, Mid, and End. The best accuracy
occurs at End for our CB module and CBgate and Front

for CBhybrid. At the best positions of respective modules,
our CB module achieves 0.1%p higher top-1 accuracy than
CBgate and demands half of the FLOPs than CBhybrid.
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