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1. Video-to-Text Retrieval Results
In our work, we focus on the task of text-to-video re-

trieval. We follow other works by also evaluating our model
trained on video-to-text retrieval for MSR-VTT 9k, since
competing methods have only provided video-to-text re-
trieval results on this data.

Method R1 ↑ R5 ↑ R10 ↑ MdR ↓ MnR ↓
CLIP4ClipmeanP [26] 43.1 70.5 81.2 2.0 12.4
X-Pool[16] 44.4 73.3 84.0 2.0 9.0
ECLIPSEmeanP † [22] 44.7 71.3 82.8 2.0 10.8
BridgeFormer*[12] 44.9 71.9 80.3 2.0 15.3
CAMoE [9] 45.1 72.4 83.1 2.0 10.0
TS2-Net [25] 45.3 74.1 83.7 2.0 9.2
X-CLIP [28] 46.8 73.3 84.0 2.0 9.1

TEFAL 47.1 75.1 84.9 2.0 7.4
Table T1. Video-to-Text Retrieval Results on MSR-VTT 9k split.
All works use a CLIP ViT-B/32 backbone which is pre-trained on
this Wikipedia-based image-text dataset.

2. Qualitative Results
In this section, we present additional examples on the

MSR-VTT dataset [42] to highlight how audio provides
complementary information to the video to achieve im-
proved text-queried retrieval. The query words of sample
7152, visualized in Figure F1 is “a person is swimming in
some white water rapids”. While the video modality alone
shows both the rapid water and the person, TEFAL w/o au-
dio (video-only model) ranks the clip as the second matched
retrieval. TEFAL, with the addition of the audio cue, cor-
rectly ranks the matched clip as the top retrieval. We no-
tice that the presence of a person is confirmed by the voice
in the latter part of the waveform (encircled in red), which
clearly demonstrates that our model picks up complemen-
tary information from the audio modality. It is also observed
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that the first part of the clip is dominated by loud sound of
streaming water but the water sound is greatly suppressed
later in the clip though the continuous presence of water
flowing in the video. This explicitly justifies building in-
dependent text-video and text-audio cross-modal attention
blocks rather than aligning video and audio embeddings as
it is in ECLIPSE [22], since the mandatory alignment be-
tween video and audio may introduce additional noise in
the audiovisual feature.

Additional examples are shown in Figure F2 to illustrate
the correspondence between the text and audio modality
that is otherwise missed between text and video. In the up-
per example, the girl talking can only be heard in the audio
signal (sample 8827); in the middle example (sample 9233),
the speech content is explicitly presented in the audio rather
than video; and in the lower example, the word “oxiders”
can only be matched in the audio from the man’s talking
(sample 9249).

3. Limitations
The main limitation of TEFAL is that without audio the

method reduces to the text-video branch, and the perfor-
mance is similar with XPool [16] (as indicated by Figure 1
in the main manuscript). If the missing audios are mostly
in the train set, meta learning approaches could help lessen
this issue [27].



Figure F1. In this figure an example is presented where a small sound has a large contribution to the final result. While TEFAL w/o audio
is not able to select the correct video, TEFAL uses the audio to select the correct video as Rank 1

Figure F2. This Figure shows three examples that illustrate the correspondence between the text and audio modality, that contains the verb
“speaking”, “talking” or a variation and specific words that correspond to the text query.
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