
Supplementary Material for NeO 360: Neural Fields for
Sparse View Synthesis of Outdoor Scenes

Muhammad Zubair Irshad12 Sergey Zakharov2 Katherine Liu2 Vitor Guizilini2 Thomas Kollar2

Adrien Gaidon2 Zsolt Kira*1 Rares Ambrus*2

* denotes shared last authorship

1Georgia Institute of Technology 2Toyota Research Institute
{mirshad7, zkira}@gatech.edu, {firstname.lastname}@tri.global

Figure 10: Detailed Architecture of NeO 360 showing the construction of image conditional triplanes, along with local
residual features and rendering MLPs to output density and color for a 3D point x and viewing direction d.

A. Network Architecture Details:
In this section, we provide more details about our

architectural design, specifically our image-conditional
tri-planar representation, as discussed in Fig. 2 and our ren-
dering MLPs as discussed in Fig. 1 in the main paper. Our
detailed architecture is presented in Fig. 10 and described
in the following sections. We first describe the details of
our encoder in Sec. A.1, next we describe the details of our
tri-planar features and residual features in Sec. A.2. Finally
we provide details of our rendering MLPs in Sec. A.3.

A.1. Encoder:

The Encoder network E comprises a pre-trained
Resnet32 [4] backbone. We extract features from the ini-

tial convolutional layer and subsequent layer 1 to layer 3
and upsample all features to the same spatial resolution (i.e.
H/2 × W/2) where W,H are image dimensions respec-
tively, before concatenating along the feature dimension to
output feature map FI with dimension 512 × H/2 × W/2
as shown in Fig. 10.

A.2. Image-conditional tri-planar features and
residual features:

In this section, we delve into the image-conditional
tri-planar features and residual features. These elements,
formed through volumetric projection, depth encoding, fea-
ture aggregation, and 2D convolutions, are essential for our
approach’s effectiveness in enhancing scene understanding.



Volumetric local features: We back project local fea-
ture map FI along every ray to the world grid (V ) to get
3D feature volume feature (VF ) with dimensions K× K×
K × 512 where K is the resolution of feature grid and we
use K = 64. Note that there is a tradeoff between the size
of the feature grid i.e. expressivity and computational cost.
We found K = 64 to give a reasonable performance while
avoiding any OOM (out-of-memory issues) due to a larger
grid size in our network training.
Feature depth-encoding: As detailed in Sec. 4.1, we learn
the depth of each feature in the feature grid using an ad-
ditional 2-layer MLP with hidden dimension 512 to output
depth-encoded features VZ of dimensions K × K ×K ×
512. Our feature aggregation module comprises three 2-
layer MLPs with hidden dimension 512 and outputs learned
weights wi over individual volumetric feature dimensions
to outputs weights wxy, wxz and wyz each with dimensions
K × K × K × 1. After performing softmax and sum-
ming over the z, y and x dimensions respectively, we obtain
2D feature maps for each of the three planes with dimen-
sion K ×K × 512.
2D Convolutions: We further use a series of 2D convolu-
tions with upsampling layers to transform the planar fea-
tures to dimension H/2 × W/2 × 128. The convolutional
layers comprise three convolutional layers with input chan-
nels 512, 256, and 128 and output channels 256, 128, and
128 respectively, with a kernel size of 3, a stride of 2, and a
padding of 1, followed by an upsampling layer with a scale
factor of 2 and another convolutional layer with an input
channel and output channel of 128. Finally, an upsampling
layer with an output dimension of H/2×W/2 is employed
before outputting the features with a final convolution layer
with input and output channels 128. All convolutional lay-
ers are followed by the BatchNorm and ReLU layers. The
output of each convolutional block becomes our tri-planar
features S, each with dimension 128× 120× 160. We sam-
ple into each plane in S by projecting x into each plane i.e.
by getting the absolute xy, xz and yz coordinates of x be-
fore concatenating and summing over the channel dimen-
sion to retrieve feature ftp with dimension N × 128 where
N denotes the number of sampled points and 128 is the fea-
ture dimension. The residual local feature fr after sampling
into FI has dimensions N × 512.

A.3. Rendering MLPs:

The rendering MLPs for both foreground and back-
ground rendering comprises 7 fully-connected layers with
hidden dimension of 128 and ReLU activation. We apply
positional encoding [6] to the input positions x and viewing
direction d. We concatenate positions x with triplanar fea-
tures ftp and residual features fr as an input to the first layer
of the MLP. We also supply the conditioning feature as a
skip connection to the third layer in the MLP and mean pool

the features along the viewing dimension in the forth MLP
layer, if there is more than one image in the input. We found
this pooling strategy to work better than pooling before the
rendering stage i.e. earlier on in the tri-planar construction
stage (A.2). In total, we use the first 4 layers to output fea-
tures of dimension N × 128, before utilizing a final density
MLP to output 1 channel value for every sampled point N .
We further use two additional dedicated MLP layers with a
hidden dimension of 128 to output a 3-channel color value
for every sampled point N , conditioned on the positionally-
encoded viewing direction and the output of the fourth MLP
layer.

B. Implementation Details:
Sampling rays: We scale all samples in the dataset so

that cameras lie inside a unit hemisphere and use near and
far values of 0.02 and 3.0 respectively. We use 64 coarse
and 64 fine samples to sample each ray.
Training procedure: To optimize NeO 360, we first sam-
ple 3 source images from one of the 75 scenes in the train-
ing dataset. For our initial training phase, we sample 20
random destination views different from the source images
used for encoding the NeO 360’s network. We sample 1000
rays from all 20 destination views. We use these randomly
sampled rays to decode the color and density for each of the
1000 rays. This training strategy helps the network simulta-
neously decode from a variety of camera distributions and
helps with network convergence. We do this by sampling
two different sets of points i.e. one for each near and far
background MLP, as employed in [7]. These points sam-
ples differ based on the intersection between the origin of
rays and the unit sphere.
Loss function and optimizer: For the first training phase,
we employ a mean squared error loss on predicted color and
target pixels at the sampled point locations in the ground-
truth images, as discussed in Sec. 4.3. We also add a reg-
ularization penalty (Eq. 9) to encourage the weights to be
sparse for both near and far background MLPs, as proposed
in [1]. For our second training phase, we select a single
destination view and sample 40× 40 patches of target RGB
for training the network using an additional perceptual sim-
ilarity loss, as described in Sec. 4.3 with a λ value set to
0.3.LLPIPS loss encourages perceptual similarity between
patches of rendered color, cp and ground color c̃t, where we
only enforce it after 30 training epochs to improve back-
ground modeling. We optimize the network for 100 epochs
in total and employ early stopping based on the validation
dataset which is a subset of the training dataset with differ-
ent viewpoints than the training camera distribution. We use
an Adam optimizer with an initial learning rate of 5.0e−4

and a learning-rate ramp-up strategy to increase the learn-
ing rate from 5.0e−5 to the value 5.0e−4 and then decrease
it exponentially to a final learning rate 5.0e−6.



V
an

N
es

s 
A

v
e 

an
d

 T
u

rk
 S

t

 

G
ra

n
tA

n
d

C
al

if
o
rn

ia
6

th
A

n
d

M
is

si
o

n

Figure 11: NeRDS360 training samples: We show diverse training samples from our proposed multi-view dataset, showing
3 examples for each map (shown on the y-axis) and displaying 5 randomly sampled images (shown on the x-axis) for each
scene, from 100 rendered images with cameras placed in a hemisphere at a fixed radius from the center of the scene.



Figure 12: NeRDS360 test samples: We show unseen test samples with completely different backgrounds and objects not
seen during training. Test samples include completely different camera viewpoints that are not observed during training
which are still sampled in a hemisphere around the foreground objects of interest. Here, we show 4 different scenes from our
evaluation dataset, different from the training dataset (shown on the y-axis) and show 5 randomly sampled images (shown on
the x-axis) for each scene, from 100 rendered images with cameras placed in a hemisphere at a fixed radius from the center
of the scene.

Compute: We train the model end-to-end on 8 A-100
Nvidia GPUs for approximately 1 day for network conver-
gence.
Parameters: Since NeO 360 has the ability to overfit to a
large number of scenes, unlike NeRF [6], we use a larger
model size of 17M parameters. Both ours and NeRF [6]’s
rendering MLP size is the same (i.e. 1.2M parameters),
although our larger model size is attributed to employing
ResNet feature block for local features (∼10M parameters)
and additional convolutional blocks for tri-planar feature.
Optional fine-tuning: Although our network gives reason-
able zero-shot performance, we also employ an additional
finetuning stage using the same few views (e.g. 1, 3 and
5 source views) to further improve the performance of our
network. Note that we employ the same finetuning strategy
for the comparing baselines (cf. Sec. 5 in the main paper)
and show that the additional finetuning stage improves the
performance of both our proposed method and competing
baseline, while our approach, NeO 360, still achieves supe-
rior overall performance. For our finetuning experiments,
we freeze the rest of the network and only the optimize tri-

planar network i.e. freezing the encoder E. We employ a
lower learning rate of 510

−6

to finetune the network from
1,3 or 5 source views.

Lreg(s, w) =
∑N−1

i=0

∑N−1
j=0 wiwj | si+si+1

2 − sj+sj+1

2 |
+ 1

3

∑N−1
i=0 w2

i (si+1 − si)
(9)

C. Experimental Setting Details:
In this section, we detail our experimental setting to

evaluate the effectiveness of our proposed method against
the state-of-the-art baselines on the NeRDS360 dataset.
We mainly evaluate for a. Prior-based sampling and b.
Novel-scene rendering. Note that unlike [2] which performs
both unconditional and conditional prior-based sampling,
our task only considers image-conditional prior-based sam-
pling for a, since we don’t optimize a latent code for each
scene and our method doesn’t rely on inference-time GAN-
inversion like [2] to find a latent code for a new scene.
Rather, our method works in a zero-shot manner reason-



ably well without any inference time finetuning or inver-
sion, since it takes as input one or few images or a novel
scene and is trained as such. We now describe more details
about each experimental setting. a. Prior-based sampling
tests for our network’s ability to overfit the training distri-
bution of a large number of scenes. In essence, we keep
the evaluation scenes fixed to one of the scenes seen during
training and use 1,3, and 5 source camera views as input
while decoding from novel camera viewpoints not seen dur-
ing training. While vanilla NeRF [6] can do this with many
different networks, each optimized from scratch from 100s
of views for a new scene, our proposed approach, thanks to
its generalizability can overfit to a large number of scenes
with just a single network without optimizing a different
latent code or vector per-scene, hence demonstrating our
network’s ability to memorize the training distribution for
a large number of scenes seen during training. b. Novel-
scene rendering considers evaluating our approach on a
completely new set of scenes and objects never seen during
training. We test for our model’s ability to generalize well in
this scenario which is a core aspect of our approach. This is
a more challenging evaluation setup than prior-based sam-
pling since the network has not seen any scenes or objects,
neither it has seen these viewpoints during training. Rather,
it only relies on the priors learned during training and the
few views available during testing (1, 3, or 5 views in our
evaluation setup) to infer the complete 360◦ surroundings
of novel scenes.

D. NeRDS360 Dataset:
In this section, we discuss our proposed NeRDS360

dataset. We show qualitative examples of our proposed
dataset in Fig. 11 and Fig. 12. Fig. 11 displays training sam-
ples of 3 different scenes from each of the 3 different maps
in our dataset. Our dataset is very diverse both in terms of
the scenes represented and the foreground car shapes and
textures. NeRDS360’s scenes also depict high variety in
terms of occlusion of foreground objects (i.e. not all fore-
ground cars are observed from all views and there are var-
ious occluders such as trees and lightning poles present in
the scene), varied number of objects represented (i.e. we
sample from 1 to 4 foreground cars for each scene with
various textures, lightning, and shadows) as well as varied
lighting and shadows in a scene (i.e. lightning and shad-
ows in each scene is not constant). Hence, our dataset and
the corresponding task are extremely challenging. We also
show different testing samples in Fig. 12. As shown in the
figure, we render completely novel viewpoints not seen dur-
ing training as well as different textures and shapes of cars
that are also not rendered during training. We evaluate for
all 100 evaluation cameras sampled inside the hemisphere,
as shown in Fig. 5 in the main paper while giving as input
1, 3, or 5 source views to the network.

a) GT
b) NeO 360

 (Adapted to Kitti-360)
c) NeRF

SSIM: 0.65 PSNR: 19.75 

SSIM: 0.74 PSNR: 21.64 

SSIM: 0.59 PSNR: 19.90

SSIM: 0.68 PSNR: 21.83 

Samples Coarse: 64 Fine: 128

Samples Coarse: 64 Fine: 128

Figure 13: Real-world results: on KITTI-360 [5], Panoptic
NeRF [3] test split

E. Additional Qualitative Results:
Results on Kitti-360: To demonstrate its applicability

to real-world data, it’s important to capture a comparable
dataset to NeRDS360 in a real-world context. While our
approach is tailored for a 360◦ environment, we’ve success-
fully adapted NeO 360 for the KITTI-360 [5] dataset. This
adaptation involves removing the distinction between near
and far and employing a single MLP for rendering. Our
method employs a source view window of the last 3 frames
to render the subsequent frame. Examining overfitting
outcomes (Fig. 13), we observe that our representation
achieves significantly improved SSIM and comparable
PSNR in contrast to NeRF, when dense views are available
for real-world unbounded scenes.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5855–5864, 2021. 2

[2] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent Dinh,
Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. Gaudi:
A neural architect for immersive 3d scene generation. arXiv
preprint arXiv:2207.13751, 2022. 4

[3] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu,
Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, and Yiyi Liao.
Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene
segmentation. In International Conference on 3D Vision
(3DV), 2022. 5

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1

[5] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. Pattern Analysis and Machine Intelligence (PAMI),
2022. 5

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 2, 4, 5

[7] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2


