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A. PSNR vs. t Comparisons
PSNR (in dB) as a function of t of frames reconstructed

by the various methods for P = 256 for both objects is
shown in Figure 8. For TD-DIP, the region between the
best and the worst PSNR values for each frame for three dif-
ferent runs is displayed shaded to highlight the varying per-
formance. For the warped walnut, compared to the best TD-
DIP performance, RED-PSM has consistently better PSNR
for all t. It also outperforms the best TD-DIP reconstructed
frames in the significant majority of t for the compressed
object. As expected, PSM-TV is suboptimal to other com-
pared methods. These figures also show, for both objects,
the transient behavior for all methods at the beginning and
end of motion.
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(a) Walnut (b) Compressed Material
Figure 8: Reconstruction PSNR vs time for the (a) time-varying
walnut, and (b) compressed material object (Right) using different
methods for P = 256. To highlight the varying performances of
three runs with TD-DIP, the area between the best and the worst
PSNR for each t is filled with red.

B. Patch-based RED denoiser
To improve the scalability of the method to higher reso-

lution and/or 3D dynamic objects conveniently, the objec-
tive in (5) can be manipulated to operate on the patches of
image frames of the time-varying object, to circumvent the
need to store the complete object f in memory. This re-
quires the denoiser Dϕ too to operate on these patches. To
showcase the potential of the suggested scheme, we replace

the full-size image denoiser with a patch-based counterpart
in the RED step, and compare the performance with the
originally proposed method for 2D dynamic objects.

We consider Q × Q-pixel partially overlapping patches
with stride (i.e., relative offset in both the horizontal and
vertical directions) S < Q, and denote by V the total num-
ber of such patches in a J×J image frame. Define the patch
extraction operator Bv : RJ2 → RQ2

, v ∈ {0, . . . , V − 1}
that extracts the v-th vectorized patch of the vectorized im-
age. Then, the patch-based denoiser for RED is trained
using

min
ϕ

∑
i

∑
v

∥Bvfi −Dϕ(Bv f̃i)∥2F

where f̃i = fi + ηi, ∀i, and ηi, σi are set as in (8). The
same data is used to train the patch-based denoiser as the
full frame denoiser in (8), with data augmentation by uni-
formly random rotations (multiples of π/2), and random
horizontal/vertical flips of each extracted patch.

The patch-based denoisers too use a DnCNN architec-
ture and have the same configuration and training policy as
the full image denoiser. In all experiments with a patch-
based denoiser, a fixed patch size of 8×8 and a stride of 2
are used.

Table 3 shows that both denoiser types perform similarly
using the same denoiser training policy as described in Sec-
tion 5.3 for both objects, confirming the effectiveness of the
patch-based RED-PSM, and its potential for highly scalable
implementation. Parameter configurations for the experi-
ments in Table 3 are provided in Table 4 in Supplementary
Material C.

C. Experimental configurations
Table 5 provides PSM-TV and RED-PSM parameter se-

lections for the experiments listed in Table 1. Likewise,
Table 4 shows the parameter configurations for the denoiser
type comparison experiments for RED in Table 3. Fi-
nally, Table 6 contains the architectural information for the
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P Denoiser PSNR(dB) SSIM MAE HFEN
256 Full-image 33.8 0.987 0.0004 0.315
256 Patch-based 33.7 0.989 0.0004 0.348

(a) Walnut
256 Full-image 35.9 0.986 0.0025 4.426
256 Patch-based 35.6 0.981 0.0027 4.559

(b) Compressed object

Table 3: Performance comparison for different denoiser types for
RED-PSM.

DnCNN denoisers used for the two different object types
throughout this work.

(a) Walnut (b) Comp. Material

P Denoiser K d λ β K d λ β

256 Full-image 10 11 5e-5 1e-4 11 13 1e-4 1e-3
256 Patch-based 10 11 5e-5 1e-4 11 13 1e-4 1e-3

Table 4: Parameter configurations for the denoiser type study ex-
periments in Table 3.

(a) Walnut (b) Comp. Material

P Method K d λ β K d λ β

32 PSM-TV (R) 3 4 5e-2 - 3 4 10 -
32 PSM-RED-ADMM (P) 3 7 1e-4 1e-4 3 9 5.12e-2 1.6e-2
64 PSM-TV (R) 3 4 5e-2 - 5 6 10 -
64 PSM-RED-ADMM (P) 4 7 1e-4 5e-4 5 9 32e-4 4e-3

128 PSM-TV (R) 5 7 5e-2 - 8 9 5 -
128 PSM-RED-ADMM (P) 6 9 2e-4 2e-4 8 11 4e-4 2e-3
256 PSM-TV (P) 10 11 5e-2 - 11 13 10 -
256 PSM-RED-ADMM (P) 10 11 5e-5 1e-4 11 13 1e-4 1e-3

Table 5: Parameter configurations for the experiments reported
in Table 1. Parameter ξ is set to ξ = 10−1 for the walnut, and
ξ = 10−3 for the compressed object experiments.

Dataset # of layers # of channels Denoising

Walnut 6 64 Direct
Comp. material 3 32 Residual

Table 6: Denoiser DnCNN configurations for the synthetically
warped walnut and compressed object datasets.
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