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Abstract

This supplementary document provides detailed imple-
mentation details of the reproduced TransFuser and Trans-
Fuser++ methods. It describes the dataset and labeling al-
gorithm used in the study. Finally, we provide additional
experimental results and qualitative examples. Qualitative
results are also visualized in the supplementary video.

1. Changes to TransFuser

Our reproduced TransFuser largely follows [7] but has
some minor differences in implementation details described
in this section.

1.1. Expert

For data collection, we follow the common practice of
using an automatic labeling algorithm (expert driver) to
generate the imitation labels. The auxiliary perception la-
bels are provided directly by the CARLA simulator except
for the bird’s eye view (BEV) segmentation, for which we
follow [25] and render the relevant objects into an HD map.
To generate the imitation labels, the expert driver needs to
solve planning and control, but can bypass perception using
privileged access to the simulator. We build our expert upon
the model predictive control (MPC) approach of [7]. Lateral
control is done by following the next point (at least 3.5 me-
ters away) in a path, created by an A* algorithm, with a PID
controller. Longitudinal control is done via MPC that dif-
ferentiates between 4 target speeds. For regular driving, we
use 8 m/s (double the target speed compared to [7]). Inside
intersections, we slow down to 5 m/s.

Collision avoidance: The target speed is set to 0 m/s when
the MPC algorithm predicts a collision. We predict col-
lisions similarly to [7]. They approximate all agents’ fu-
ture positions by iteratively unrolling a kinematic bicycle
model [4]. Actions for other cars are set to be the same
as the current time step while the ego agent’s own action
is approximated by using a PID controller to follow the A*

path. In case the ego agent’s bounding box overlaps with
another agent’s bounding box at future time step ¢, a col-
lision is predicted. To keep a safety distance to the lead-
ing vehicle, the MPC expert in [4] additionally has a static
bounding box in front of the ego agent that predicts a colli-
sion if it intersects with any other agent. Because our agent
has double the maximum driving speed, we need to keep a
larger safety distance. Using a static area would not suffice
here, as the static bounding box will become so large that
it sticks into the opposing lane during turns, causing unnec-
essary braking. Instead, we approximate the area where the
expert would end up if it performed a full brake (after 1 me-
ter of driving) at his current speed s. The distance to stop d
is approximated with:

s* 3.6
10.0

d=0.5x( )2 425 (1)
We again use the kinematic bicycle model to compute
where the expert will be after this distance. If the bounding
box of the expert at that time step intersects with any bound-
ing boxes for the current time step, we set the target speed
to 0. This approach has the advantage that the safety area
follows the road and increases with increasing agent speed.
A second problem coming from the higher driving speed
is scenario 3 where a pedestrian runs in front of the vehi-
cle. The expert will stop as soon as the pedestrian attempts
to move forward, but when driving at 8 m/s this is already
too late to prevent the collision. To solve this problem, we
preemptively slow down to 2 m/s whenever a pedestrian is
within a 30-meter radius in front of the vehicle.

Traffic rules: Stop signs infractions are addressed by
slowing down to 2 m/s when the safety area intersects with
the stop sign trigger area (provided by the simulator) and
stopping once the car is on the stop sign trigger area. Red
lights are resolved by setting the target speed to 0 when the
safety area or vehicle intersects with the entrance of an in-
tersection and the corresponding traffic light is active.
Performance: We show in Table 1 that our expert outper-
forms the baseline by 4 DS. This represents a higher upper
bound for our imitation learning models. However, since
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(a) TransFuser (NC conditioned)

(b) TransFuser (TP conditioned)

(c) TCP [23] (TP conditioned)

Figure 1: Extrapolation to target point. Additional example of an unknown situation where TP conditioned methods
extrapolate their waypoints towards target points. The TP conditioned models succeed to drive back to the lane, while the

discrete conditioned model gets stuck on the sidewalk.

Method | DSt RC? | Veh| Block |

MPC Expert [7] 77 +2 8941 0.28 0.13
MPC Expert (ours) | 81 +3 90 + | 0.21 0.09

Table 1: Expert comparison on Longest6

no method can currently reach that upper bound, we see no
direct improvement from the better expert (see Table 2).

1.2. Dataset

We generate our training dataset by executing the expert
described in Section 1.1 on the training routes from [7] and
storing every frame (20 FPS). Weathers are randomized per
route instead of per frame to avoid exposure problems. Dur-
ing training, we train on every fifth frame, leading to an ef-
fective FPS of 4. For the scaling experiment, we rerun data
collection on each route 3 times. This randomizes weath-
ers and traffic (the traffic manager in CARLA 0.9.10 is not
deterministic) but the environment is the same.

For the final model in the main paper we recollect the
data at 4 FPS and train on every frame. The model sees
equivalent data, but this makes the second dataset is 5x
smaller and hence easier to release. To reduce storage re-
quirements further, we compress the camera images with
JPG (we add the compression during inference as well
to avoid distribution shifts), perception labels with PNG
(depth maps are stored at 8 bit resolution), text files with
zip, and LiDAR point clouds with LASzip [ 10] (which com-
presses point clouds much better than standard zip). We

store full 360° LiDAR sweeps and realign all points into
the coordinate system of the current frame. Since the expert
is not a perfect driver, we log the driving score of each train-
ing route and only train on routes with 100 DS. The labels
for the disentangled path are generated by storing the next
10 2D points (spaced 1 meter apart) from the A* path the
expert is following.

1.3. Training and Architecture

Training: We use the same loss functions as in [7] for
all 5 outputs. For the new target speed classification task
we use a class frequency weighted cross-entropy loss with
label smoothing 0.1. As classes we use the 4 different tar-
get speeds of the expert (see Section 1.1). We observe some
failure cases where the target speed predictions are overcon-
fident, and the car starts braking a few frames too late when
stopping behind another vehicle, leading to close rear col-
lisions. Label smoothing addresses this problem because
it makes the car drive a bit slower (due to the probability
weighting). This gives the car a few more frames time to
brake and avoids these collisions. To make this more ex-
plicit, we do not use label smoothing in the final model in
the main paper, and instead reduce the target speeds by 2
m/s during inference, achieving the same effect.

During training, each individual loss is added together
with the same weight. The loss weights are normalized to
sum to 1. We use AdamW [13] with amsgrad [17] and a
slightly higher learning rate of 0.0003 which is reduced by
a factor of 10 after epoch 30. We train for 31 epochs and
always use the last epoch as our model. All models in Sec-
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(a) TCP [23] follows a shortcut.

(b) TransFuser follows a shortcut.

(c) A transformer decoder fixes this.

Figure 2: Target point shortcut. When TP conditioned methods extrapolate to spatially distant waypoints, they incur large
steering errors. Replacing global average pooling in TransFuser with a cross-attention mechanism mitigates the issue.

tion 3 of the main paper are trained on 8 2080ti GPUs with
distributed data parallel and total batch size of 48. For the
dense dataset, we subsample by a factor of 5 but shift the
first frame by the GPU index, so that all the frames are seen
during training (a subtle form of data augmentation, close
by frames are mostly redundant).

The final model is trained with 4 A100 GPUs and batch
size 128 to speed up training. We also add standard color
augmentations to the camera and a discrete conditioning
concatenated with the velocity input, so that the target speed
branch also has a conditioning signal. This is conceptually
more sound, but we observed no significant impact on driv-
ing performance. Our path labels have a subtle ambiguity
due to conversion from a path in global coordinates to the
local ego coordinate system (points can be shifted by 1 me-
ter depending where the car is on the path). To resolve this,
we linearly interpolate between the stored points at 1 me-
ter distances in ego coordinates during training. This makes
the predictions look qualitatively more consistent, but again
has no significant impact on driving score.

Architecture: For the BEV semantic segmentation we pre-
dict 11 classes (unlabeled, road, sidewalk, non cross-able
lane marker, cross-able lane marker, stop signs, traffic light
stop line green / yellow / red, vehicle, pedestrians) [25]. We
only predict pixels that are visible in the camera, since some
classes need RGB features. For the perspective segmenta-
tion we predict 7 classes (unlabeled, road, sidewalk, lane
markings, traffic light, vehicle, pedestrian). For the bound-
ing boxes we predict 4 classes (red and yellow traffic light
stop line, stop sign, vehicles and pedestrians). Traffic lights
and stop sign boxes are only predicted if they affect the ego

vehicle. Vehicles and pedestrians only when they are in the
LiDAR range. Architecture wise we add 1x1 convolution
layers in the LiDAR branch before each transformer that
match the channel dimension of the LiDAR to the one in
the image branch (allows using different backbones for the
two branches, though we keep using RegNetY-3.2GF [16]
for both). Our reproduced TransFuser predicts 8 waypoints,
each placed 250 ms apart (up to 2 seconds into the future).
Sensors: We follow [23] and use a single high resolution
camera. It has a 110° horizontal field of view (FOV), is
mounted at (-1.5, 0.0, 2.0) and has a resolution of 256 x
1024. Our LiDAR is mounted at (0.0,0.0, 2.5) and has a full
360° FOV. LiDAR points are realigned into the current ve-
hicle coordinate system by using the filter described in Sec-
tion 1.4. The LiDAR points are voxelized into a 256x256
grid representing a 64 x 64 meter area with the vehicle at its
center. Each pixel covers a 0.25 x 0.25 meter area. We re-
move the LiDAR ground plane by removing all points with
a height of less than 0.2 meters.

Performance: The reproduced TransFuser has a slightly
lower DS to the original on the Longest6 benchmark as
shown in Table 2. The difference in driving score likely is
a result of the driving score weighting the dissimilar failure
modes differently. Note, that our reproduced TransFuser is
a single model, whereas the original result was from an en-
semble of 3 models.

1.4. Localization

We localize our vehicle with a GNSS sensor. The GNSS
signal has Gaussian noise applied to it, leading to average
localization errors of ~0.7 meters. Like prior work [5, 7]



Method | DSt RC1 | Veh| Stat]

TransFuser (ours) 40 82 1.17 0.57
TransFuser [7] 47 93 2.45 0.07

Table 2: Reproduced TF vs original on Longest6

we use a filtering algorithm to reduce the noise. In particu-
lar, we use an Unscented Kalman Filter (UKF) [19,22] with
Van der Merwe’s scaled sigma point algorithm [14]. As its
model of the car, our UKF uses the same kinematic bicycle
model as the expert [4]. The filter tracks the position, orien-
tation and speed of the ego vehicle. The parameters of the
filter are tuned manually by reducing localization error on a
small dataset consisting of ground truth localization paired
with GNSS signals (similar to tuning hyperparameters on a
validation set in supervised learning). The filter reduces the
average localization error to below ~0.1 meters.

1.5. PID Controller

In [7] the PID controller converts the waypoints into
steering by computing the car’s angle towards the average
between the first two waypoints. The angle is then input to
a PID controller to minimize. Computing the angle based
on entangled waypoints makes the steering angle towards
the path depend on the predicted speed of the vehicle. This
works well at the low driving speeds of [7] but becomes
hard to tune when driving at higher (and more diverse)
speeds like our expert. Instead, we follow the first way-
point that is at least a certain aim distance a away from the
center of the car (or the last one). We keep a similar to [7]
and use a = 2.25 when driving slower than 5.5 m/s (inside
intersections) and a = 3.0 when driving faster. Longitudi-
nal control is kept similar, we use the velocity between the
waypoint 0.5 second into the future and 1 second into the
future as target speed. The models using the disentangled
waypoint representation do not require tuning an additional
controller. Since we directly predict the input to the expert’s
PID controller, we can reuse the same PID controllers from
the expert (see Section 1.1), which we know work well.

The task of yielding to stop signs is defined in CARLA to
stop the vehicle on a STOP paining printed on the road. This
stop painting is largely occluded by the motor hut once the
car is on the sign because our camera is mounted at the back
roof of the vehicle. We observe many cases where TF++ de-
tects the stop sign initially and slows down but starts driving
again once the painting becomes occluded. We can address
this problem in the controller because TF++ detects stop
sign bounding boxes in BEV as auxiliary task. For our fi-
nal model, we keep the last detected stop sign in a buffer
and transform it to the current ego coordinate system using
the UKF motion estimation. If the car is on the stop sign
bounding box we set the action to brake in the controller

until the stop sign is cleared. Table 3 shows the impact

Stop Contr. | DS+  RC? | Stop |
- 60+5 99 +1 1.35
v 706 99 +o0 0.26

Table 3: Stop sign controller.

of the stop sign controller change on the validation routes.
TF++ detects most stop signs and the controller is able to
reduce Stop infractions by 5x, leading to an improvement
of 10 DS.

2. TransFuser++ Implementation Details
2.1. Attention Pooling Implementation

The core implementation of our attention pooling with
a transformer decoder is similar to [20]. We use the 8x8
features coming from the BEV branch and reduce the num-
ber of channels (1512 with our RegNetY-3.2GF backbone)
to 256 with a 1x1 convolution. We add a sinusoidal posi-
tional embedding to the features and flatten them afterward.
The velocity input, we normalize with a 1D Batchnorm and
embed it with a 2 layer MLP to 256 features. Afterward,
we add a learnable positional encoding. The velocity token
then gets concatenated to the BEV tokens. These tokens are
then processed by a standard Transformer decoder [21] that
has 8 heads, gelu activation function [8], 6 layers and uses
layernorm [3]. We use 1 learned queries for every predicted
waypoint and 1 additional one if we predict target speeds.
The tokens are then fed as inputs into a GRU, whose hidden
state is initialized with an (MLP embedded) target point.
A linear layer converts the output to 2 dimensions, and a
cumulative sum is applied to the final vector (forcing the
network to predict offsets from the first point).

2.2. Data Augmentation

When collecting data with the expert driver, we mount
an additional camera on the vehicle that collects augmented
frames and labels at every time step. This means for every
frame in the dataset, we have an augmented counterpart. We
shift the camera by -1 meter to the left or right (of the vehi-
cle) and rotate it by £5° around the yaw axis. The particular
values are drawn from a uniform distribution. During train-
ing, we load the perturbed camera with 50% probability.
We transform the 2D way point labels and other data such
that they have the perturbed camera as center. The shifted
and rotated waypoint labels do not describe an actual re-
covery trajectory that an expert would take, and are instead
the original waypoints in the center of the lane. However,
the PID controller will steer the car back to the center of
the lane, when the network predicts these augmented way-
points, achieving a similar effect. The range of errors the
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(a) Slowing down at a green light.

(b) Slowing down behind a cyclist.
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(c) Disentangling route and target speed.

Figure 3: Waypoints are ambiguous. The model’s output representation forces it to predict a single mode for future

velocities.

network is trained to recover from equals the range of the
perturbations. To generate the perturbed camera, we need
access to a rendering engine (CARLA in our case). On real
data, a similar effect can be achieved using novel view syn-
thesis [2].

3. Additional Results
3.1. Longest6 Ablations

As a sanity check, we test our additions to TransFuser by
repeating the experiments on the training towns (Longest6)
while training with all data. The results are presented in Ta-
ble 5. We start with our reproduced version of TransFuser
and iteratively add 1 change in every row. All results are
the average of 3 training seeds, each evaluated 3 times. The
reported standard deviation is across the training seeds. The
main problems of the reproduced TransFuser are high colli-
sions with other vehicles (Veh) and collisions with the static
environments (Stat). Replacing the global average pooling
and MLP with a Transformer decoder improves the driv-
ing score by 17 points, improving both vehicle collisions
and collisions with the environment (indicating improved
steering). Adding shift and rotation augmentations has a
similar effect, improving the driving score by +9 and reduc-
ing collisions. The disentangled representation has a similar
effect than on the validation routes, increasing vehicle col-
lisions and reducing collisions with the environment. Since
Longest6 has denser traffic, the increased vehicle collisions
have a larger impact here, leading to an overall decrease
in 2 DS. Two stage training improves DS by +3 and scal-
ing the dataset by 3x leads to a result of 69 DS. Since the

waypoint representation is slightly better on longest6, we
additionally report the result of a variant called TF++ WP
in Table 5. It was trained with the released dataset and uses
waypoints as output representation, but is otherwise identi-
cal to TF++. TF++ WP again has a slightly higher DS of
+1. We also report the result of an ensemble of the 3 train-
ing seeds following prior work [7]. The ensemble reduces
vehicle collisions by 0.10 and leads to a SotA result of 73
DS on longest6.

3.2. Brake Threshold

The confidence weighted PID controller from the mod-
els using target speed prediction has a hyperparameter that
determines at which confidence threshold the action is set to
full brake. In Table 6 we investigate the effects of different
thresholds on validation towns.

Lower thresholds reduce vehicle collisions at the cost of
lower route completion due to false positive braking. Over-
all, the choice of threshold is robust, only changing by 3 DS
between the best and worst tested threshold. We use the de-
fault threshold of 50% for all validation town experiments.
On Longest6, the brake threshold has a slightly larger im-
pact because the dense traffic puts a higher focus on col-
lision avoidance. We therefore use the threshold 33% for
Longest6 experiments.

3.3. Additional Baselines

We report 3 additional results on the validation towns in
Table 4. TF++ (all towns) is TF++, but its training includes
the validation towns. This is not a fair comparison to other
methods, and rather serves to illustrate what part of the re-



Method | DSt RC1t IST | Ped| Veh| Stat| Red| Stop| Dev| TO| Block|
LAV v2 [5] 27 +1 9841 027 £001 0.00 0.35 0.04 2.39 1.42 0.00 0.09 0.00
Perception PlanT [18] | 37 +5 86 +7 0.45+009 | 0.00 0.92 0.31 0.09 1.87 0.00 0.25 0.14
TransFuser (ours) 39+9 84 +7 046 +006 0.00 0.74 1.04 0.20 1.07 0.00 0.23 0.21
TCP [23] 5845 8543 0.67+006 | 0.00 0.35 0.16 0.01 1.05 0.00 0.19 0.19
TF++ (ours) 70 6 99 +0 0.70 +006 | 0.01 0.63 0.01 0.04 0.26 0.00 0.05 0.00
TF++ (all towns) 90+1 99+1 0914002 | 0.00 0.18 0.00 0.05 0.00 0.00 0.02 0.00
Expert 94 95 0.99 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08

Table 4: Performance on validation towns (LAV). Reproduced models, std over 3 trainings and 3 evaluations.

Method | DSt RCt | Veh| Stat|
TransFuser (ours) 40 +3 8242 1.17 0.57
+ transformer decoder | 57 +3 90 +3 0.93 0.19
+ data augmentation 66 +4 94+2 | 0.64 0.07
+ disentangled 64 4 96 +1 0.88 0.02
+ two stage 67 +2 96 +1 0.82 0.01
+ 3x data 69+1 97+ 0.79 0.00
TF++ WP (ours) 70+4 94 +2 | 0.66 0.01
+ ensemble 73 97 0.56 0.01

Table 5: Longest6 Ablations. Each row has the previous
one as baseline. Std over 3 training and 3 evaluation runs.

Threshold | DSt RCT ISt |Veh|

50% 60+6 98 +1 0.61 +006| 0.73
40% 58 +1 96 +5 0.61 £004| 0.78
(
(

33% 61 +3 96 +4 0.64 007 0.61

)
)
)
25% 59 £3 95 +6 0.63 +o0.08| 0.64

Table 6: Brake threshold.

maining problems are due to generalization issues. Includ-
ing the validation towns during training increases the driv-
ing score by 20 points, improving both vehicle collisions
and stop sign infractions. TF++ is close to expert level per-
formance in this setting, “underfitting” by 4 DS. The expert
still has slightly lower vehicle collisions (Veh).

We retrain Perception PlanT [18] on its released dataset.
It achieves a DS of 37. Perception Plant uses a handcrafted
intermediate representation (bounding boxes) as visual ab-
straction. This makes the method more interpretable, but
the downside of human designed representations are that
they might miss important things. In this case, the bound-
ing boxes do not include stop signs, leading to the method
ignoring all stop signs (Stop) and incurring a large penalty
for that infraction (1.87). Stop signs were not considered in
the benchmark this method was developed on (Longest6).

The reproduced LAV v2 [5] also achieves a surprisingly
low driving score of 27. The reason for this are its high stop

sign and red light infractions. The red light infractions oc-
cur almost exclusively in Town 02 which has European style
traffic lights. We evaluate on the LAV routes with additional
scenarios (7,8,9,10) compared to the original benchmark.
Due to the added scenarios, many traffic lights will turn yel-
low (and then red) just as the agent approaches an intersec-
tion. LAV v2 ignores those situations, incurring many red
light infractions, bringing the overall score down. Besides
the failure to adhere to traffic rules, LAV v2 achieves SotA
results in route completion and vehicle collision avoidance.

3.4. Additional Examples

Fig. 1 shows another example of the importance of the
target point for recovery. This time we forcefully steer
the ego car onto the sidewalk, which is also an out-of-
distribution situation. The target point conditioned methods
(here TransFuser and TCP) extrapolate their waypoints to-
wards the nearby target point and drive back to the center of
the lane. The discrete conditioned TransFuser that does not
have access to the geometric information of the target point
gets stuck on the sidewalk instead.

Fig. 2 shows another example of harmful target point ex-
trapolation. TCP and TransFuser both predict waypoints
leaving the road in a right turn where the target point is
far behind the turn. Changing the global average pooling
+ MLP approach in TransFuser to a transformer decoder
mitigates the problem.

3.5. Additional Experiments

Multimodal waypoints: Instead of disentangling the ve-
locity from the waypoints one could also allow the network
to predict multiple sets of waypoints as is sometimes done
in trajectory forecasting. To test this approach we train
a model with two waypoint GRUs and a selection head
to classify the better mode. During training we compute
the loss as the minimum L1-loss from both predicted way-
points. The classification head is supervised with a binary
cross entropy loss to classify which of the two waypoint
losses has the lower L1 loss. Table 7 shows that the rep-
resentation performed 2 DS worse than using standard uni-
modal waypoints. This is not a big difference but the multi-



Output | DSt RC? | Veh| Stat|
Multimodal WP | 47 +5 96 +1 | 1.13 020
Unimodal WP 49 3 90+4 | 0.70 0.10

Table 7: Multimodal waypoint representation.

modal waypoints are more complex so there is not really a
reason to use them.

NC conditioned AIM: To test whether recovery from the
target point bias depends on the architecture, we reproduce
the AIM [15] approach. Compared to TransFuser it uses no
LiDAR, no auxiliary losses and no transformers, but has the
same target point conditioned waypoint GRU as decoder.
Like with TransFuser we run two variants, one with TP con-
ditioning and one with NC. The result presented in Table 8

Cond. | DSt RC? | Dev ]
NC 27 +2 50 +3 0.96
TP 262 86+ | 0.00

Table 8: Conditioning effect on AIM [15]

also show a strong impact of TP conditioning on RC and
route deviations (Dev) for the AIM architecture, suggesting
that the target point bias does not depend on the particular
architecture used. Consistent with [15] we also observe that
AIM performs worse than TransFuser overall (-13 DS).
Target Point statistics: To show the importance of the
TP for the network predictions we train a model where we
input the TP as a TF decoder token so that we can analyse
the attention weights. We average the attention across all
layers, heads and waypoint queries. We run the model on
the validation routes and observe an avg. of 25% attention
on the TP token which is 16.5x higher than uniform. We
also test how steering correlates with the target point. The
sign of the steering angle (when larger than 1°), of our final
model, is the same as that of the target point (TP) 92% of
the time (93% for the expert) on the validation routes.

3.6. CARLA Leaderboard

The CARLA leaderboard [ 1] (we are considering version
1 in this discussion) is a test server where groups can sub-
mit agents enclosed within a docker container. These agents
are then evaluated on a set of 10 routes across 2 secret
towns. Each route is traversed 2x with different weather
conditions. Additionally, these 20 routes are then repeated
5 times with different random seeds and average metrics
across all routes are reported to the user. The CARLA
leaderboard serves as a standardized evaluation platform,
comparable to a test set, and some works solely rely on it to
compare to other work [5,20,23]. Significant progress has
been achieved on this benchmark. Driving scores have in-
creased from approximately 10 DS to 70-80 DS over a span

of three years. The top performing methods on the leader-
board have released code and models alongside the release
of their research papers. In this study, we try to reproduce
the top 4 reported results by submitting the released code to
the leaderboard, either with the released model (*) file or a
retrained one (7).

Reproduced Reported
Method DSt RCt IST|DS+ RCt ISt
LAV™ [5] 25 46 64| 62 94 0.64
Interfuser™ [20] 34 75 045| 76 88 0.84
TCP 7 [23] 48 66 0.77| 70 83 0.85
TF++ (ours) 53 71 0.76 - - -
TransFuser  [7] 55 90 0.63| 6l 87 0.71
TF++ WP (ours) 62 78 0.81| - - -
TF++ WP Ens. (ours) | 66 79 084 | - - -

Table 9: CARLA leaderboard reproduced results.

Table 9 shows significant disparities between reported
results and the outcomes obtained when utilizing the offi-
cial codebases. Notably, the released model of the SotA
method Interfuser achieves less than half of the reported
score. With the exception of TransFuser, these differences
are larger than what we would expect from training or eval-
uation variance. The CARLA leaderboard ensures repeata-
bility (within the bounds of evaluation variance) because
one can rerun the submitted docker container. It does how-
ever not guarantee reproducibility, since released code and
models can differ from what was used to achieve the re-
ported score. Currently, it is publicly not known how to
achieve scores above 60 DS, even though some groups have
achieved such scores in the past. Given that the official
codebases incorporate the main concepts discussed in the
respective papers, these results indicate that factors not ex-
plicitly emphasized in the papers significantly influence the
outcomes observed on the CARLA leaderboard.

Note, that it has been documented in [7] (Table 5) that
some changes can have a significant impact on performance
on the leaderboard (+19 DS), even though the same changes
do not generalize to the public towns (-2 DS on Longest6).
This discrepancy can be attributed, in part, to substantial
fluctuations in RC, which we don’t observe in the publicly
available towns. The evaluation is secret, so the exact rea-
sons for these fluctuations are unclear. The LAV results
are crossed out because the low score can be attributed to
CUDA out of memory errors stemming from the released
software, that appear after route 53. The CARLA leader-
board fails silently and gives 0 DS on routes where the soft-
ware crashes. We contacted the organizers in this case be-
cause some of the auxiliary metrics looked unusual.

Furthermore, the auxiliary metrics on the CARLA
leaderboard are typically not reported because they are



known to be incorrectly computed'. The results presented
in Table 9 were obtained with released code and models
around April 2023. It should be noted that these results are
subject to change if the authors decide to update their repos-
itories. We submit TF++ and TF++ WP (see Section 3.1) to
the CARLA leaderboard. Surprisingly, we observe a large
difference of 9 DS between the representations. The reason
for that difference is unclear because the effect is not re-
producible on the publicly available towns. Similar to prior
work [7], we submit an ensemble with 3 training seeds of
our best model to the leaderboard. The ensemble increases
the driving score by 4 points and is the best publicly avail-
able model, at the time of writing.

Discussion: The CARLA leaderboard aimed at repro-
ducing success in past benchmarks like ImageNet for au-
tonomous driving. It has led to similar fast progress, al-
though the resulting methods are not always reproducible
and not very well understood. There are structural changes
the community could make that we think should be consid-
ered when designing future benchmarks.

The CARLA leaderboard does not have an official vali-
dation benchmark. Since validation is fundamental to ma-
chine learning development, authors have proposed various
validation benchmarks [5-7,15,25] using the publicly avail-
able towns. They differ along various axes: the towns, route
length, scenarios and wheathers used for validation. Based
on our experience, none of the available validation bench-
marks can reliably predict performance on the CARLA
leaderboard. It is hard for authors to make validation routes
that are well aligned because the test routes are secret. As a
consequence, results on the CARLA leaderboard are often
unexpected, requiring authors to run additional investiga-
tions [7]. Other authors choose not to use the leaderboard
in their publications [9, 12, 18,24,25]. Submissions on the
CARLA leaderboard may encounter a pending status if all
servers are in use. During this project, we have encountered
pending times of up to 3 weeks. Submissions themselves
then take more than four days to evaluate, leading to to-
tal evaluation times of up to 4 weeks. For comparison, we
can run a similar amount of simulation on our cluster in
3-6 hours, by evaluating all routes in parallel. Achieving
this efficiency requires a scalable infrastructure but uses the
same amount of computational resources as when evaluat-
ing routes sequentially. We encourage organizers of future
testing benchmarks to release an aligned public validation
benchmark that authors can use to do rapid experiments on.

The CARLA leaderboard is a benchmark that is not asso-
ciated with any dataset. Consequently, authors are required
to create their own datasets for training their methods. In
the early stages, the quality of these datasets, including sen-
sor configurations, label accuracy, and scale, was often sub-
par. Substantial progress has been made by enhancing the

Uhttps://github.com/carla-simulator/leaderboard/issues/117

quality of the data itself [I1]. Most papers, including this
one, introduce a new dataset alongside their method. While
this practice allows for innovation in dataset curation tech-
niques, it also complicates fair comparisons between dif-
ferent methods. Additionally, it can obscure the source of
performance improvements if the dataset is not studied as
well. Although there have been some efforts in dataset cu-
ration [4,25], such efforts could be more fruitful if there was
a standardized dataset to compare to.
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