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Abstract

This supplementary contains more experiments involving
ablations or analysis on various datasets, to further pro-
vide better understanding of our method as well as its ad-
vantages. We provide analysis of various ablations in our
method in Sec. 1. Following this we provide further analy-
sis of knowledge transfer for a given student w.r.t. various
teachers in Sec. 2. We also show more results of our ap-
proach against the baselines, under transfer learning setup,
in Sec. 3 along with extending it to other multi-modalities
as well in Sec. 4. Finally, we further analyze our scheme
and baselines on ImageNet-P dataset in Sec. 5 followed by
amount of parameters we tune for different students (Sec. 6)
and implementation details (Sec. 7) for reproducibility.

1. Further Ablations
We further provide an analysis of various variants, so as

to understand importance of each of the proposed modules
namely the multi-headed architecture, knowledge distilla-
tion from small to big network and uncertainty/kl diver-
gence used at the inference time. We begin with analyzing
the importance of proposed inference procedure.

1.1. Inference

We first begin with ablation on the proposed scheme for
inference involving Monte-Carlo Dropout (MCD) uncer-
tainty Umc and KL divergence calculation (Sec. 4.3.2 in
the paper). We also define a new term along with accuracy,
for analyzing these inference time ablations. It is the frac-
tion of examples in the test set, for a given dataset , which
are assigned the correct head (clean for in-distribution and
unclean for distribution/dataset shift). We denote it by
Fcorrect. We start by analyzing the importance of KL diver-
gence and thereby comparing our proposed scheme against
the variant without any KL divergence calculation at the in-
ference time.
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KL Divergence Table 1 shows the analysis of our method
with and without (w/o) KL divergence calculation at the in-
ference time, on all the distribution shift datasets used in
the paper for Visual Evaluation setting. The variant with-
out the KL divergence term at the inference time is denoted
as Ours w/o KLD in the table. It also shows the results
for transfer learning experiments. The student model cor-
responds to multi-modal CLIP ViT-L@333px network and a
single modal ViT-B/16 is used as the teacher. The last col-
umn of the table consists of average accuracy across all the
distribution shift datasets. It can be observed that there is a
small gain (average of 0.9%) across all the distribution shift
scenarios when using our complete method as compared to
this variant. Thus, using KL divergence at the inference
time further rectifies the model performance. Also, Table 2
shows the analysis of Fcorrect metric on all the distribution
shift datasets used. Here also, a noticeable difference is ob-
served implying KL divergence is significantly helping in
deciding the correct head for the input. Next, we consider
the ablation for the Umc term.
Uncertainty. Similar analysis for Umc is shown in Table
1 and the row corresponding to Ours w/o Umc denotes this
case. Again, removing the uncertainty component causes a
depreciation in performance, but more than removing the
KL divergence component (average decrease of 1.9% as
compared to 0.9% from removing KL Divergence term at
the inference time). Hence, both components are neces-
sary for most optimal prediction. Furthermore, from Table
2 showing analysis of Fcorrect, it can be observed that using
this Umc term is significantly helping in deciding the correct
head, again impacting more than the KL Divergence term.
Confidence based head selection. We also compare our
head selection scheme with a case where instead of KL
divergence or uncertainty, the predictive confidence of the
clean and unclean heads is used for selecting the final clas-
sification head. Table X also contains the results for this
method in the row Ours(max logit). Again our proposed
head selection scheme surpasses it with a significant mar-
gin.



1.2. Knowledge Distillation

We now discuss the importance of the knowledge distil-
lation (KD) module (Sec. 4.3 in the paper) proposed in our
work, used for tuning the student model parameters. For
this, we define another variant of our method with the multi-
headed architectural scheme but without any KD. Table 1
also shows the analysis for this case using same models and
scenarios as the above cases, compared against our method.
The row corresponding to Ours w/o K.D. corresponds to this
ablation. It can be observed that our method improves per-
formance significantly as compared to this ablation (aver-
age 2.5% across distribution shifts), thereby showing utility
of knowledge transfer. On clean dataset, only a marginal
increase in performance is observed. Thus, the knowledge
distillation component in our method plays a significant role
in inducing robustness. Further comparison against this ab-
lation for different teacher student pairs is shown in table
3. Again significant performance improvement, upto 2.6%,
can be observed for our method using knowledge distilla-
tion.

1.3. Amount of dataset

We further analyze the impact of using different amounts
of data while distilling knowledge, as it is crucial in de-
ciding the computational overhead. Let us denote the total
number of examples in the augmented data as N

′
and the

number of examples (sampled randomly) for updating the
student model as aN

′
(0 < a < 1). Here, we analyze our

scheme for different values of a when it is applied on the
ResNet-101 student with ResNet-34 as the teacher. The re-
sults are shown in Figure 1. It can be observed that as the
data for tuning increases, the performance gap between our
method and baseline increases, implying robustness of our
scheme increases significantly w.r.t. data as compared to
baseline.

2. Analyzing improvements in Teachers v/s
Students

We now analyze the effect of improving robust accuracy
of the small teacher model on the robustness it transfers to
the student model using our method. For this, we analyze
the ImageNet-C accuracy of the robustified student when
using different teachers (having different ImageNet-C ac-
curacies after their robustification). We fix the student to
be a CLIP ViT-B/16 model and use robustified RN-34, RN-
50, RN-101, RN-151, ViT-Tiny, ViT-Small as the teachers.
Table 4 shows the results for this analysis where each row
corresponds to a teacher and columns show the robust ac-
curacy of both teacher and the robustified student on the
ImagNet-C dataset. In majority cases difference in student
accuracy between a given row and the row just upper it, is
higher as compared to the same quantity but for the teacher

Figure 1. Ablation on amount of distillation data v/s accuracy.
The x-axis shows the fraction of augmented data used in distilla-
tion and the y-axis shows the accuracy achieved for each fraction
by the APT baseline and our method on the ImageNet-C dataset.
Here, ResNet-101 is used as the student network, updated using a
ResNet-34 teacher, both being single modal.

column. This shows that when we switch to a better teacher
(i.e. teacher accuracy gets increased) then the increment in
student accuracy, in majority cases, is even more.

3. Further results on Transfer Learning
We further analyze our proposed scheme for the transfer

learning setup under more datasets used in the CLIP paper
for classification. Specifically, we use the Cars [3], CIFAR-
100 [4], Aircraft [5] and SUN-397 datasets [6] for this setup
and compare our model against the transfer learning of the
original CLIP model and its completely fine-tuned version
under the Visual Evaluation setting. Figure 2 shows the re-
sults for this analysis where original denotes the visual en-
coder of the initial CLIP model without any tuning. It can
be observed, similar to the main paper, that complete fine-
tuning is not able to preserve the transfer learning or gener-
alization capabilities of the model whereas our method pre-
serves this important characterstic of a pretrained model.

4. Analyzing more Multi-Modalities
We further analyze our method for other popular

pretrained Multi-Modal Networks namely LiT[8] and
UniCL[7]. For LiT, we use the LiT-B/16B model and for
UniCL we use the SWIN-T model. Figure 3 shows the re-
sults for various teacher student pairs under Visual Evalu-
ation setting on ImageNet-C,R datastes and under the Zero
Shot setting on ObjectNet,ObjectNet-C datasets. For both
settings Unimodal ResNet-101 and ViT-Small are used as
teachers. Each vertical bar for a given student on x-axis
(LiT/UniCL) correspond to a particular teacher and y-axis
denotes the accuracy. For Visual Evaluation, we use APT
baseline (rows with Teacher set to None) and for Zero-Shot,
original Zero-Shot model (without any fine-tuning) is used
as the baseline.



Distribution Shifts Transfer Learning Avg.
IN IN-V2 IN-R IN-Sketch ObjectNet IN-A IN-C Tiny-IN Flowers shifts

CLIP ViT-L/14@336px

Inference Time Ablations

Ours w/o KLD 84.7 78.3 89.3 65.6 72.8 79.3 63.1 85.2 98.7 74.7
Ours w/o Umc 83.9 77.7 88.4 64.9 71.5 77.6 62.2 85.2 98.7 73.7
Ours (max logit) 84.2 77.6 88.1 64.1 71.5 79.2 62.9 85.2 98.7 73.7

Knowledge Distillation Ablation

Ours w/o K.D. 84.9 77.6 86.8 63.2 70.3 78.3 62.1 85.4 98.8 73.1

Ours 85.4 79.1 89.9 65.8 73.2 80.9 64.9 85.2 98.7 75.6

Table 1. Visual Evaluations results : Accuracy. Comparison with ablations of our method discussed in Sec. 1 on all the distribution
shifts used in the paper along with transfer learning experiments for the CLIP ViT-L/14@336px model . The last column shows the average
accuracy over all the shifts. The first row of numbers correspond to the version of our method without KL divergence term at inference
time. Similarly, the row below it corresponds to our method but without uncertainty (Umc) term at inference time. The second last row
corresponds to the variant of our method without any knowledge distillation and the last row correspond to our complete method using
single modal ViTB/16 teacher.

Distribution Shifts
IN IN-R IN-Sketch ObjectNet IN-A IN-C

w/o KLD 0.89 0.82 0.71 0.82 0.79 0.83
w/o Umc 0.71 0.69 0.72 0.61 0.63 0.71

Ours 0.95 0.94 0.89 0.84 0.92 0.94

Table 2. Visual Evaluations results : Fcorrect. Analysis of our
method and its ablations (discussed in Sec. 1) using the Fcorrect

(fraction of examples for which correct head is selected) metric
descirbed in Sec. 1, for the CLIP ViT-L/14@336px model. Here,
w/o KLD denotes the ablation without the KL divergence at infer-
ence time and similarly w/o Umc denotes the ablation without the
uncertainty term (Umc) during inference. For our method single
modal ViT-B/16 is used as teacher.

Student Teacher Ours w/o K.D. Ours

RN-101 RN-34 53.8 55.3
CLIP RN-101 RN-101 54.9 56.7

CLIP ViT-B/16 ViT-S 55.1 57.4
CLIP ViT-B/32 ViT-S 54.5 57.1

Table 3. Knowledge Distillation Ablation : Accuracy. Compar-
ison with the w/o K.D. (without knowledge distillation) ablation
of our method (refer Sec. 1) using both single and multi-modal
(CLIP) networks as students and single modal teachers, under a
Visual Evaluation setup on the ImageNet-C dataset.

It can be observed that our method again improves the ac-
curacy over the APT baseline by around 2.5% (average) on
the ImageNet-C dataset and by around 1.9% (average) on
the ImageNet-R dataset under the Visual Evaluation setting.
Similarly for Zero Shot setting, it improves accuracy by
around 2.5% (average) over the baseline on the ObjectNet-
C dataset. This shows that our method generalizes well to
other pretrained multi-modalities as well.

CLIP ViT-B/16 Student (149M)

Params Teacher Student

RN-34 11M 55.7 54.3
RN-50 23M 57.6 56.9
RN-101 45M 58.7 57.2

ViT-Small 48M 60.9 57.4
RN-151 60M 62.4 59.7

ViT-Base 88M 63.2 62.5

Table 4. Visual Evaluation Results : Accuracy. Analyzing how
robust accuracy of CLIP ViT-B/16 student changes with increas-
ing robust accuracy of the teacher. Here, each row corresponds
to a robustified teacher with architecture given in the first column.
The teacher column shows the accuracy of this robustified teacher
on the ImageNet-C data. Similarly, each student column element
shows the accuracy of the fixed student on the ImageNet-C data,
when the teacher corresponding to its row is used in our method to
distill knowledge.

5. Analysis on ImageNet-P

We further analyze robustness using the mean Flipping
Rate (mFR)[2] for the ImageNet-P dataset for various CLIP
models (RN-50,101 and ViT-B/16) under the Visual Evalu-
ation setting.
We begin by first analyzing the robustness of the teacher
models, robustified using the scheme described in the main
paper (using AugMix+DeepAugment). Table 6 shows this
analysis, comparing the mFR metric for these single-modal
teacher networks, with and without (Naive) applying the ro-
bustification scheme. It can be observed that their perfor-
mance is significantly improved after robustification. The
best performance is shown by the ViT-Small model. Even
though the model has comparable parameters to ResNet-
101, still a significant difference in the performance high-
lights its robust learning scheme. Given the robustified



RN-101 RN-151 ViT-S ViT-B16 RN-50C RN-101C ViT-B16C ViT-L14C LiT-B16/B

Tuned 2.1M 2.6M 2.3M 3.1M 3.9M 4.1M 4.3M 5.6M 4.4M
Total 45M 60M 48M 88M 102M 119M 149M 450M 195M

Table 5. Number of parameters tuned and total number of parameters for all the students used. Here, each column corresponds to a student
network architecture used in this work. First row shows the number of parameters for a given column as student, when our method is
applied to update this student. The last row shows the total parameter count of this student.

Figure 2. Transfer Learning under Visual Evaluation setup. The x-
axis consist of various datasets and y-axis shows the accuracy on
each of these datasets under the transfer learning setup. This anal-
ysis is done for original pre-trained CLIP ViT-L/14@333px model
(Original), its ImageNet fine-tuned version (Fine-tuned) and after
it has been updated using our approach with a ViT-B/16 teacher
(Ours).

Figure 3. Visual Evaluation Results : Multi-Modalities. y-
axis : Accuracy, x-axis : Multi-Modal Student, vertical bar :
Teacher.This figure analyses our method on the ImageNet-C,R and
ObjectNet,ObjectNet-C datasets when LiT-B/16B, UniCL SWIN-
T multi-modal networks are used as students (x-axis) and are tuned
using single modal networks (RN-101, ViT-S) as teacher (vertical
bar). Vertical bar labelled None correspond to APT baseline. It
can be observed that out method provides significant gains over the
APT baseline, especially when ViT-S model is used as the teacher.

teachers, we now evaluate students tuned using our method
on this dataset. Figure 4 shows the results for the CLIP

Arch. Naive AugMix+DA

RN-34 59.8 41.6
RN-50 57.1 37.5

RN-101 52.7 34.6
ViT-Small 49.2 33.4

Table 6. Comparison of mean Flipping Rate (mFR) on ImageNet-
P dataset to analyze robustness induced by applying AugMix+DA
for tuning the relatively small teacher models.

Figure 4. Visual Evaluation Results : mFR. y-axis : mFR, x-axis
: CLIP Student Network architectures, vertical bar : Teacher. This
figure analyses our method on the ImageNet-P dataset when var-
ious CLIP model architectures are used as students (x-axis) and
tuned using various single modal networks as teacher (vertical
bar). Vertical bar labelled None correspond to APT baseline. It
can be observed that out method provides significant gains over the
APT baseline, especially when ViT-S model is used as the teacher.

model students using our method and also for the APT base-
line. It can be observed that our method is able to reduce
mFR by upto 3% and greater than 2% for the cases with
ViT-Small as the teacher. Even thouh ViT-Small and RN-
101 have similar number of parameters, still a significant
difference is observed for CLIP RN-50 and CLIP ViT-B/16
model showing that ViT transfers the robustness more effi-
ciently w.r.t. this dataset.

6. Parameters Tuned
We provide the number of parameters tuned for each net-

work used as student and updated using our approach along
with their total parameter count in table 5. Unless men-
tioned the number of parameters tuned for a given student
in all of the experiments corresponds to the value provided
in this table.



7. Implementation Details
The network tuning using our algorithm involves up-

dating a portion (refer table 5) of the complete architec-
ture starting from end using a learning rate of 1e − 3
and a batch size of 256 using an Adam optimizer. For
tuning our method, unless mentioned, we use the half of
the complete augmented data (a=0.5), generated by Deep-
Augment+Augmix. The tuning is carried out for 500
epochs. Robustifying the teacher involves the same pipeline
and hyper-parameters as proposed in the DeepAugment
paper[1]. Also a dropout is applied while training with
probability set to 0.25. The last one-fifth of the tuning por-
tion corresponds to clean/unclean and combined heads. At
the inference time, N = 10 samples are drawn per head
with dropout activated to estimate uncertainty term (Umc).
Not, this requires multiple passes only through dropout ac-
tivated layers, not the complete model.
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