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1. Detailed Proof of Downsampled Invariance
Loss

Proposition 1. Let x be a normalized zero-mean noisy im-
age conditioned on y, E[x|y] = y. Let d be any downsam-
pling operation and ds(x) be a set of downsampled pixels
of x with a stride of s. Assume that downsampled subimage
ds(x) has zero pixel-wise correlation and fM is a blind-
spot network. Then, the following inequality holds.
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Proof. We follow similar steps with the supplementary ma-
terial of [5]. Self-supervised loss can be decomposed as

Ex ||f(x)− x||2 =Ex,y ||f(x)− y||2 + ||x− y||2

− 2⟨f(x)− y,x− y⟩. (2)

Then, Proposition 1 is equivalent to that the third term
⟨f(x)− y,x− y⟩ is upper-bounded by the rightmost term
in Eq. (1). ⟨f(x)− y,x− y⟩ can be formulated as
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Eq. (5) holds since Ex|y(xj − yj) = 0 by the zero-mean
noise assumption. Let J be a subset of the image sampled

by a random downsampling operation ds(x). Then we have
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since every pixel has the chance of selecting |J |/m = 1/s2.
On the right-hand side, the covariance term can be upper-
bounded as
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In Eq. (10), the equality holds since xj is excluded in BSN
and downsampled surroundings have no correlation with
xj by the assumption. Note that the Inequality (11) is de-
rived from the Cauchy-Schwarz inequality, and the Inequal-
ity (12) is derived from Jensen’s inequality. Also, the In-
equality (13) holds by the fact that Var(x) ≤ E[x2], and by



the assumption that input x is normalized i.e., Var(xj |y) ≤
Var(xj) = 1.

By the Proposition 1, we use Eq. (15) as downsampled
invariance loss,

Linv =

√
s2

m
||ds(f(x))− sg(fM (ds(x)))||2, (16)

where sg is the stop gradient operation. fM (ds(x)) is in-
troduced to Eq. (10) since it has zero correlation with xj .
Therefore, we regard it as a constant and adopt a stop-
gradient operation in the loss function. Lastly, we replace
the root mean squared error with mean absolute difference
in downsampled invariance loss as

Linv =
s2

m
||ds(f(x))− sg(fM (ds(x)))||1. (17)

2. Analysis of Downsampling Ratio in Loss
Functions

We conduct extensive experiments to analyze the effects
of the downsampling ratios in LinvRS and Lblind. Fig-
ure 1 shows the PSNR of C-BSNa/b on SIDD validation
dataset [1], where a is the stride of RS in the downsampled
invariance loss and b is the stride of S2B in the blind loss.

Using strides less than 4 in the blind loss leads to sub-
optimal performance, showing that reducing spatial corre-
lation of masked network input is crucial. Regarding the
strides of RS, the performance tends to decrease as the stride
increases over 3, while C-BSN with a = 1 fails to denoise
the image. Although the performance is maximized with C-
BSN3/4, the performance gap is marginal and falls within
the range of variation caused by the randomness of the train-
ing process. Therefore, we adopt C-BSN2/5 as a baseline,
consistent with AP-BSN [3].

3. Ablation on Downsampler of Blind Loss
We conduct an additional ablation study on the down-

sampler of blind loss. We follow the same setting as Sec-
tion 4.3 in the paper. Table 1 reports PSNR and SSIM of the
network with different downsampler in the blind loss. Re-
gardless of downsampling operations, models trained with
small strides show poor performance, which is consistent
with the result of Figure 1. Space2batch, with a stride of
5, achieves the highest PSNR and SSIM compared to the
other two downsamplers. Therefore, we employ S2B as the
downsampling function for the blind loss.

4. More Visualized Results
We present more visual comparisons on SIDD [1] val-

idation and NIND [2]. We compare C-BSN with other
self-supervised methods, CVF-SID (T) [4], CVF-SID (S2),
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Figure 1. PSNR of C-BSNa/b on SIDD validation [1], where a
denotes the stride of RS and b denotes the stride of S2B.

Table 1. Ablation on the downsampler of blind Loss.

downsampler stride PSNR(dB) SSIM

PD
5 34.83 0.912
2 29.11 0.715

S2B
5 36.22 0.935
2 25.93 0.810

RS
5 35.67 0.924
2 30.54 0.771

AP-BSN [3], AP-BSN (R3) [3], which aim to remove real-
world noise. We use official code from the authors’ GitHub
with the pre-trained model. The denoised results of various
scenes are illustrated in Figure 2.

For NIND, we use C-BSN† which is trained on the test
set directly. Figure 3 shows the noisy images from NIND
and its denoised outputs. We mark ROI with red boxes
for each image and present noisy-denoised pairs of cropped
patches.
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Figure 2. Visual comparison of denoised images on SIDD validation [1]. We provide PSNR and SSIM in the upper left of the images.
All images are upsampled by 2 with the nearest neighbor for better comparison. Best viewed in pdf.



(a) NIND soap ISO6400

(b) NIND MuseeL-coral2 ISOH1

(c) NIND MVB-LouveFire ISOH1

Figure 3. C-BSN† results of NIND [2] samples. (Left) Real noisy images from NIND. (Right) Enlarged noisy-Denoised image pairs.


