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Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations

A. Limitations
Our proposed directional moment loss Ldm is designed

to align the image directions with the text directions. How-
ever, it could be very hard or even infeasible to achieve com-
plete alignment between two modalities in some scenar-
ios with large domain gaps, e.g., “Dog-to-Joker” that share
few common visual concepts and require significant content
changes. Meanwhile, the adaptation process requires the
expert intervention to determine the language description of
the source domain as well as appropriate training iterations
for the desired result, due to the lack of quality measures. In
addition, since our directional moment loss Ldm solely de-
pends on the guidance provided by CLIP [12] text encoder,
there might exist risks of inheriting underlying biases which
can cause fairness and privacy issues. Capturing and allevi-
ating the bias for GAN adaptation is an important research
topic that is beyond the scope of this work.

B. Quantitative evaluation.
For quantitative quality evaluation, we measure Fréchet

Inception Distance (FID) [3] in the “dog-to-cat” scenario
between the generated samples and the AFHQ-Cat [1] train-
ing split. With 5 independent runs using different random
seeds, we generated the same number of images with the
real dataset, and then computed the mean and standard de-
viation of FID. As shown in Table 1, we achieved better
FID in zero-shot setting with the help of learned semantic
variations as well as source knowledge for diverse charac-
teristics. Moreover, we accomplished the state-of-the-art in
the 10-shot setting, demonstrating scalability and superior-
ity. To further evaluate quality and diversity, we respec-
tively plot the precision and recall [14, 15, 9] for each trun-
cation rate in Figure 1. Our framework reports comparable
precision with the baseline while showing improvements in
recall rate, which is closely related to sample diversity.

C. Hyperparameter ablations.
The quantitative analyses on hyperparameters are pro-

vided in Table 2. Note that λEWC affects the level of
source characteristic preservation, while λrel is related to
the degree of maintained semantic relationship between im-

Table 1. FIDs [3] under the “Dog-to-Cat” scenario on AFHQ [1].

Methods FID (↓)

StyleGAN-NADA [2] 70.225±0.242
Ours 61.347±0.317

Ojha et al. (10-shot) [11] 57.196±0.249
StyleGAN-NADA (10-shot) [2] 60.500±0.191
Ours (10-shot) 45.084±0.108

Table 2. FIDs [3] under the “Dog-to-Cat” scenario on AFHQ [1].
FID (↓)

λEWC λrel K (number of zi)
105 94.317 1 82.900 2 81.840
106 77.898 10 76.590 4 71.793
107 (Ours) 61.347 100 (Ours) 61.347 6 (Ours) 61.347
108 81.758 1000 81.758 8 66.698

ages before and after adaptation. We meticulously set these
weighting factors to guarantee that all losses (Ldm, LEWC ,
Lrel) are balanced in terms of their magnitude. In addition,
enlarging the number of semantic variations K showed in-
creased fidelity with the excavated semantics of the target
domain. However, setting a large K makes the semantic
variation learning more challenging, resulting in a slightly
quality decrease. Meanwhile, the perturbation strength ϵ is
an important parameter for optimizing semantic variation.
A large ϵ makes Lcons optimization difficult, while a small
ϵ causes fast convergence and minimal semantic differences
after perturbation. To discover meaningful semantic varia-
tions, we empirically set the value ϵ to ||ET (ttrg)||2, which
has been shown to enable sufficient convergence within
2,000 iterations.

D. Few-shot GAN adaptation.
To further verify the effectiveness, we extended our

framework to few-shot GAN adaptation, i.e., 10-shot, 5-
shot and 1-shot settings. For each target image, we ex-
tract feature from the image encoder and conduct seman-
tic variation learning process. As reported in Table 1, our
framework achieved FID score of 45.084 in 10-shot setting,
considerably surpassing both StyleGAN-NADA [2] and the



Figure 1. Precision and Recall [9] with varying truncation rates in the “Dog-to-Cat” scenario on AFHQ [1].

Ojha et al. [11]. It is also notable that we scored 61.347 FID
in zero-shot setting comparable to few-shot methods.

Moreover, in 5-shot and 1-shot settings, we present qual-
itative results respectively in Figure 2 and 3. Remark-
ably, our method shows more visually favorable results with
diverse facial characteristics, e.g., emotional expressions,
compared to previous methods [11, 2] as shown in Fig-
ure 2. Also compared to MTG [18] and DynaGAN [8] in
1-shot setting (Figure 3), it is notable that our method has
strength in both utilizing diverse semantic information of
source contents and maintaining original identity, while still
being able to capture the style of target samples (e.g., face
of the joker, hairstyle of the doctor brown).
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Figure 2. Results on 5-shot GAN adaptation scenario with the
StyleGAN2 trained on FFHQ.

Style 1

DynaGAN [8] MTG [18]Source Ours OursDynaGAN [8]

Style 2

MTG [18]

Figure 3. Results on 1-shot GAN adaptation scenarios with the
StyleGAN2 trained on FFHQ.

E. Additional Qualitative Results
In this section, we provide further qualitative results in

various GAN adaptation scenarios which are not included
in the main manuscript in Figures 4 through 9. Most of
the hyperparameters are kept unchanged except for λewc,
which is adjusted from 107 to 106 for artistic texture manip-
ulation, e.g., “Photo-to-Sketch” and “Photo-to-Caricature”.
We can observe that structural layouts are reflected in the
results of StyleGAN-NADA and ours. Noticeably, the pro-
posed framework synthesizes buildings with diverse charac-
teristics with the help of Ldm which guides the model with
explored semantic variations. Also, the contexts are well
preserved by inheriting useful knowledge from the source
generator via LEWC and Lrel.

F. Questionnaire for User Study
In Fig. 10, we present the screenshots of questionnaires

for the user study. The questionnaire is composed of 25
questions for quality evaluation and 6 questions for diversity
assessment. Each question contains the generated samples
from Ojha et al [11], StyleGAN-NADA [2], and ours in the



“Cat-to-Dog” scenario from the same latent codes. To eval-
uate the quality, we requested users to select the best result
that looks most like a “Dog” while preserving the content
information of the source image (Fig. 10 (a)). For diversity
assessment, we provided the participants with a set of 4 im-
ages from each method and asked to pick the one showing
the most diverse characteristics of dogs (Fig. 10 (b)). Note
that we manually shuffled the order of methods for the reli-
ability of the survey.

G. License
In Table 1, we specify the source and licenses of

the models and datasets used in our work. Note that
the FFHQ [5] dataset consists of facial images collected
from Flickr, which are under permissive licenses for non-
commercial purposes.

Table 3. Sources and licenses of the utilized models and datasets
Models License
StyleGAN2 [6] Nvidia Source Code License
scikit-learn-extra [16] BSD 3-Clause
CLIP [12] MIT License
StyleGAN2-pytorch [7] MIT License
StyleGAN-ADA [4] Nvidia Source Code License
psp [13] MIT License
Ojha et al. [11] Adobe Research License
StyleGAN-NADA [2] MIT License
Datasets
FFHQ [5] CC BY-NC-SA 4.0
AFHQ [1] CC BY NC 4.0
LSUN [17] No License
CelebA [10] CC BY-NC-SA 4.0
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Figure 4. Qualitative results in the adaptation scenarios of from the source generator trained on LSUN-Church dataset [17] to different
buildings, i.e, “Hut” and “Temple”, and to fictitious village of “Shire”. The results of StyleGAN-NADA [2] are sharing a specific design
or global characteristic of the target domain, e.g., green doors and walls of huts. On the other hand, the proposed framework synthesizes
buildings with more diverse textural details. Moreover, various contexts of the source domain are well inherited and fully utilized to
generate satisfactory results.
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Figure 5. Qualitative results in the adaptation scenarios of from the source generator trained on LSUN-Car dataset [17] to different back-
grounds, i.e, “Car in the beach” and “Car in the forest”, and appearance translation to “Sportscar”. StyleGAN-NADA [2] samples fails
in succeeding context of the source domain, filling the overall image even in the sky region. Also in “Car-to-Car in the forest” and “Car-
to-Sportscar”, the underlying bias of the target text prompt are reflected to StyleGAN-NADA, e.g., dark car in the forest and same the
sportscar design. In contrary, our framework generates results with more diverse designs and characteristics.
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Figure 6. Generated samples from StyleGAN2 [6] trained with FFHQ [5] in various adaptation scenarios.
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Figure 7. Generated samples from StyleGAN2 [6] trained with FFHQ [5] in various adaptation scenarios.
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Figure 8. Generated samples from StyleGAN2 [6] trained with AFHQ-Dog [1] adapted to various target domains.
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Figure 9. Generated samples from StyleGAN2 [6] trained with AFHQ-Dog [1] adapted to various target domains.



(a) Quality Assessment (b) Diversity Assessment

Figure 10. Screenshots of user study on (a) quality assessment and (b) diversity assessment.
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