
Supplementary materials for
BlindHarmony: “Blind” Harmonization for MR Images via Flow model

1. Dataset description
The BlindHarmony framework proposed in this work

was trained and evaluated using the OASIS3 [2], employ-
ing a target domain consisting of images acquired with a
Siemens TIM Trio 3T MR scanner. Meanwhile, as a source
domain, images obtained from four other scanners were uti-
lized, including the Siemens Magnetom Vida 3T MR scan-
ner (Domain 1), the Siemens Vision 1.5T scanner (Domain
2), the Siemens BioGraph mMR PET-MR 3T scanner (Do-
main 3), and the Siemens TIM Trio 3T MR scanner (Do-
main 4). Domain 4 scanner shared the same scanner version
with the target domain scanner. All images were resampled
to a uniform resolution of 1.2×1.2×1.2 mm and normal-
ized using min-max normalization at the slice level. Table 1
provides detailed information regarding the acquisition pa-
rameters.

2. Training details
2.1. Flow model

For our experiments, we employed the Neural Spline
Flow (NSF) architecture [1] with rational quadratic (RQ)
spline coupling layers. The majority of the hyperparam-
eters for the network were set to the same values used in
the original NSF paper for experiments on the ImageNet
dataset. Specifically, the tail bound B and the number of
bins K for the RQ spline coupling layers were set to B = 3
and K = 8, respectively. A multiscale architecture similar
to that of Glow was utilized, with each layer of the network
consisting of 7 transformation steps, including an actnorm
layer, an invertible 1 × 1 convolution, an RQ spline cou-
pling transform, and another 1 × 1 convolution. The net-
work itself comprises 4 layers, which results in a total of
28 coupling transformation steps. Additionally, 3 residual
blocks and batch normalization layers are included in the
subnetworks parameterizing the RQ splines. An Adam op-
timizer with an initial learning rate of 0.0005 and cosine an-
nealing of the learning rate was used to iteratively optimize
the parameters up to 20K steps. Two separate models were
trained, one for simulated dataset validation and one for
real-world dataset validation. The same hyperparameters
were assigned to both models except for the dataset com-

Figure 1. Example images of the trained flow model.

position, with the simulated evaluation dataset consisting of
76775/775/800 slices for training/validation/testing, and the
real-world evaluation dataset consisting of 75240/760/1000
slices for training/validation/testing. An example of a sam-
pled image of the flow model is illustrated in Figure 1.

2.2. U-Net

The U-Net [3] architecture includes 4 Down blocks and 4
Up blocks, each block consisting of two sequences of con-
volution layer, batch normalization, and ReLU activation.
The Down blocks utilize maxpooling, while the Up blocks
use bilinear upsampling. The U-Net also utilizes skip con-
nections. The training was done with 120 epochs using L1



Target domain Domain 1 Domain 2 Domain 3 Domain 4
Manufacturer Siemens Siemens Siemens Siemens Siemens

scanner version TIM Trio Magnetom Vida Vision BioGraph mMR TIM Trio
Magnetic field strength (T) 3 3 1.5 3 3

Matrix size 176×256×256 176×240×256 128×256×256 176×240×256 176×256×256
resolution (mm) 1×1×1 1.2×1.05×1.05 1.25×1×1 1.2×1.05×1.05 1×1×1

TR/TI (s) 2.4/1 2.3/unknown 9.7/unknown 2.3/0.9 2.4/1
TE (ms) 3.2 3.0 4 3.0 3.2

Flip angle (◦) 8 9 10 9 8
Total number of sessions 1568 378 620 879 625

Table 1. Scan parameters of domains in OASIS3 dataset is illustrated.

Domain 1 Domain 2 Domain 3 Domain 4
U-net (slices) 5100/1000 9750/600 25150/1000 19350/1000

CylceGAN (slices) 17400/1000 29000/600 42100/1000 29050/1000

Table 2. The number of training/test datasets for each domain.

loss and the Adam optimizer with a learning rate of 0.001.
For the simulated dataset evaluation, the same dataset com-
position used in training the flow model was utilized, with
a composition of train/val/test = 76775/775/800 slices. For
the real-world dataset application, the validation step was
dropped to increase the number of training data. The num-
ber of datasets varies by domain, as described in Table 2.

2.3. CycleGAN

The generator in CycleGAN [4] consists of 2 convolution
layers with instance normalization and ReLU activation, 9
residual blocks, and 3 convolution layers with instance nor-
malization and ReLU activation. Each residual block in-
cludes a residual connection of 2 convolution layers with
instance normalization and ReLU activation. The discrimi-
nator consists of 5 convolutional layers, 4 leaky ReLU, and
4 instance normalization. The CycleGAN uses identity loss,
cycle loss, and adversarial loss, and training was done with
40 epochs using the Adam optimizer with a learning rate
of 0.0002. For the simulated dataset evaluation, the same
dataset composition used in training the flow model was
utilized, with a composition of train/test = 76775/775/800
slices. For the real-world dataset application, the validation
step was dropped as in the U-Net cases, and the number
of target domain images was train/test = 75240/1000 slices,
while the number of source domain images varied by do-
main, as described in Table 2.

3. Ablation study

We compared the PSNR and SSIM values of a simulated
dataset to a baseline by varying one of the hyperparameters
α, β1, and β2.

PSNR Exp Log Gamma 0.7
Baseline 29.6 28.8 27.4
α = 0 29.5 28.5 27.2
β1 = 0 18.5 18.5 18.6
β2 = 0 29.6 28.8 27.4

SSIM Exp Log Gamma 0.7
Baseline 0.985 0.978 0.969
α = 0 0.984 0.977 0.968
β1 = 0 0.693 0.695 0.696
β2 = 0 0.985 0.978 0.969

Table 3. The ablation study.

Figure 2. Visual illustration for Eq. 1 and Eq. 2.

4. Illustration for Eq. 1 and Eq. 2

When harmonizing two T1 weighted images from differ-
ent scanners, the images are primarily created by the prop-



erties of the brain (e.g., T1, proton density) while scanner-
specific differences are mostly spatially slow-varying pat-
terns (e.g., center-brightening from B1 inhomogeneity).
Consequently, a high spatial correlation (Eq. 1) exists be-
tween the images, and their edges are likely to coincide (Eq.
2). These can be observed in Fig. 2. The non-edge masks
of the images from the two different domains exhibit a high
coincidence, and the scatter plot demonstrates a strong cor-
relation between the two images. If these conditions are not
met, it may create a failure case (e.g., harmonizing T1 and
T2 weighted images).

5. Visual examples
Exemplary images of the simulated source domain

dataset application, real-world data application, and the
downstream task application are illustrated in Figures 3, 4
and 5
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Figure 3. Example images of BlindHarmony application of simulated source domain images.
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Figure 4. Example images of BlindHarmony application of real-world data images.
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Figure 5. Example images of BlindHarmony application to the downstream task of white matter segmentation network.


