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Overview

This supplementary material provides implementation
details including the architecture details, training details
and inference details of The Power of Sound (TPoS) in Sec-
tion A. Next, in Section B, we provide our detailed survey
methods and analysis of user study. Finally, in Section C,
we show a wider range of qualitative results in two ways:
(i) comparison to StyleGAN [5]-based audio-driven video
methods, and (ii) demonstrating multiple examples in an
open domain.

A. Implementation Details
Architecture details of Mapping Module. The Map-

ping Module, denoted as MAP in our main paper, consists
of several MLP layers, which consist of Linear-Linear-
Dropout-GELU layers. The purpose of this module is to
align the audio embeddings with textual prompt in Stable
Diffusion [9]. The prompt is converted into a sequence vec-
tor via the conditional encoder in Stable Diffusion, which
is transformers as CLIP-L/14 [8] Text Encoder. Since au-
dio embeddings from the Temporal Attention Module is
not sequence-like vectors, we use the Mapping Module to
broaden the dimensions like text embeddings (e.g. from
<S0S> token to <EOS> token). To achieve this, MSE loss
is used to align the audio embeddings (e.g. underwater bub-
bling sound) with the text sequence embeddings of the au-
dio class (e.g. “Underwater Bubbling”) from CLIP-L/14.
Specifically, to obtain sequence-like vectors, the <SOS> to-
ken is removed from the text embeddings, which is the same
for all prompts. Later, we concatenate the <SOS> token
with the converted audio embeddings to feed the audio con-
dition into Stable Diffusion in the inference stage.

Training details. Our end-to-end Audio Encoder model

is trained using a combination of Adam [6] optimizer and
SGD [10] optimizer. While the Mapping module is trained
with Adam optimizer, the remaining modules are trained
with SGD optimizer. We distribute the inputs evenly across
4 NVIDIA GeForce RTX 3090 GPUs and train the entire
model for 24 epochs. We use the VGG-sound dataset [3]
and Landscape [7] for training our model. The Audio En-
coder is trained with hyper parameters such as a learning
rate of 0.001, a batch size of 160, a weight decaying param-
eter of 0.0005, dropout of 0.2 and a momentum of 0.9 for
the SGD optimizer. Note that our Audio Encoder has not
been further fine-tuned for any specific task or experiment.

Details of Audio Semantic Guidance. To implement the
Audio Semantic Guidance module following SEGA [1], the
semantic difference between the concept-conditioned and
unconditioned estimates, denoted as 1), is first scaled (see
notations in Section 3.3 of our main paper):

¢(Z67Cp,cn) = 69(Z67Cn> - 60(Z%>Cz) (1)

Then, the values of the distribution %) in the upper and
lower tail are used as the dimension that represent the spec-
ified concept. Therefore, the location to be changed can be
obtained, and it can be expressed as:

oc, where || > na(|¢])
0, otherwise.
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where 7, (|¢|) indicates the A-th percentile of v, and o,
decides the intensity of the semantic audio guidance.

Three hyper parameters, namely J, o, and A, are re-
quired for audio semantic guidance. The parameter § con-
trols the degree of preservation of the original prompt. In
our experiments, we set § between 800 and 950 out when
T = 1000 in order to balance the preservation of the orig-
inal prompt with the visualization of the effect of audio se-



Table 1: Comparison of the quality of generated video
frames with Sound2Sight [2] and Sound-guided Video Gen-
eration [7] with different data sampling methods.

Sound2Sight [2] Sound-guided [7] Ours

FVD| CLIP} (t4+v) FVD) CLIPt (t3v) FVD]  CLIPT (t4+v)

Random Sampling [7] 488.18 0.2025 476.67 0.2037 462.68 0.2416

Class-balanced Sampling  494.28 0.2164 544.09 0.1702 421.23 0.2436

mantics. The o. hyper parameter represents the degree of
the scale of audio semantics effects and it is set to between
2.5 and 8 in our experiments. Note that the o, hyper pa-
rameter is not related to the areas that need to be changed.
Instead, it is related to the A parameters, which is set to be-
tween 0.8 and 0.99. We stress that these hyper parameters
are fixed in a single video.

Details of Quantitative Experiment. We observe that
Landscape dataset contains class-imbalanced audio, i.e., a
large portion of the dataset is related to the sounds of wa-
ter. Thus, for a more thorough comparison, we use class-
balanced sampling to obtain test sets, which makes the per-
formance of Sound-guided Video Generation [7] degraded.
We provide our analysis in Table 1.

B. User Study Details

In user study, participants rate the realness, vividness,
consistency of movement, and relevance between audio and
video on a five-point scale, ranging from “1 - very unreal-
istic” to “5 - very realistic,” “1 - very unvivid” to “5 - very
vivid,” “1 - very inconsistent” to “5 - very consistent,” and
“1 - very irrelevant” to “5 - very relevant,” respectively.

Specifically, we ask participants “On a scale of 1 to 5,
how realistic the video is? Please rate the realism, with 1 be-
ing very unrealistic and 5 being very realistic”, “On a scale
of 1 to 5, how vibrant does the video appear? Please rate
the vividness, with 1 being not vibrant at all and 5 being
extremely vibrant.”, “On a scale of 1 to 5, how well does
the movement in the video match the audio levels? Please
rate the consistency, with 1 being very inconsistent and 5
being very consistent.”, and “On a scale of 1 to 5, how rele-
vant video with the audio sound? Please rate the relevance,
with 1 being not relevant and 5 being very relevant.”. The
order of videos within each question is randomized to pre-
vent participants from inferring the unique quality of each
baseline.

C. Qualitative Results

Comparison to StyleGAN-based baselines. We compare
our methods with StyleGAN [5] based TraumerAl [4] and
Sound Guided Video Generation [7] in Figure 1. StyleGAN
based methods both face challenges in effectively aligning
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Figure 1: Comparison with StyleGAN [I |]-based method.
First row and second row represent video frames from
TraumerAl [4] and Sound guided Video Generation [7].
The last row shows video frames which are generated from
our model.

audio semantics with latent space of StyleGAN despite of
fine-tuning. On the contrary, our model can express the au-
dio semantic meanings in multiple domains thanks to the
rich latent space of Stable Diffusion models. Furthermore,
compared to other baselines, our model is able to manipu-
late certain areas (e.g. fire on the stove top) via Audio Se-
mantic Guidance through multiple denoising steps in Stable
Diffusion. Our experiment reveals that our method can gen-
erate videos that have significant relevance and consistency
with audio sound.

Additional Qualitative Examples. Figure 2 shows our
model can generate video frames in diverse domains. Fur-
thermore, Figure 3 and Figure 4 demonstrate the semantic
consistency between sound and video. Lastly, our model
can generate multiple high-fidelity frames naturally by the
interpolation in Figure 5.
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Figure 2: Examples of diverse examples in open domains. The sound of splashing water, squishing water and fire crackling
are used.
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Figure 3: Example of video frames with multiple seed numbers. We regulate the prompt and audio sound as a given input
feature and change a seed number randomly. The video frames are temporally consistent with the magnitude of audio.
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Figure 4: Example of video frames with different sound. The video frames are consistent and relevant with the audio
semantics.
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Figure 5: Example of video frames with interpolation module. A number of video frames are generated reactively by audio
sound.
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