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In this supplementary, we provide the proofs for the the-
orems we proposed in the main manuscript. In addition, we
also provide more experimental results. This document is
organized as follows. Section A presents the detailed proofs
of Theorem 1. In Section B, it elaborates on proof of The-
orem 2. At last, Section C completes the experimental re-
sults.

A. Proofs of Theorem 1
Theorem 1. Suppose A ∈ Rn1×n2×n3 with t-SVD A =
U ∗ S ∗ VT and β > 0. The Enhanced Tensorial Rank
Minimization problem (ETRM) can be described as follows:

argmin
G

β ∥G∥ETR +
1

2
∥G − A∥2F . (1)

Then, optimal solution G∗ is obtained as:

G∗ = U ∗ ifft(Proxf,β(Sf ), [], 3) ∗ VT , (2)

where ifft(Proxf,β(Sf ), [], 3) ∈ Rn1×n2×n3 is a f-
diagonal tensor, and Proxf,β(Sk

f (i, i)) satisfies the follow-
ing equation

Proxf,β(Sk
f (i, i)) = argmin

x≥0

1

2
(x− Sk

f (i, i))
2 + βf(x),

(3)
where f(x) = eδ

2
x

δ+x .

To prove Theorem 1, we first introduce the following
lemma.

Lemma 1. [2] Given G,A ∈ Rm×n, and A = USAV
T

is the SVD of A and β > 0, then an optimal solution to the
following problem

min
G

β ∥G∥ETR +
1

2
∥G−A∥2F , (4)
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is G∗ = US∗
GV

T , where S∗
G = diag(σ∗) and σ∗ =

proxf,β(σA). And proxf,β(σA) is the Moreau-Yosida op-
erator [3] defined as:

proxf,β(σA) := argmin
σ≥0

βf(σ) +
1

2
∥σ − σA∥22 , (5)

where f(x) = eδ
2
x

δ+x .

Proof In Fourier domain, there is a fact that ∥X∥2F =
1
n3

∥Xf∥2F , so the objective function 1
2 ∥G − A∥2F +

β ∥A∥ETR can be rewritten as:

1

2
∥G − A∥2F + β ∥A∥ETR

=
1

2n3
∥Gf −Af∥2F +

β

n3

n3∑
k=1

∥∥Ak
f

∥∥
ETR

=
1

n3

n3∑
k=1

(
1

2

∥∥Gk
f −Ak

f

∥∥2
F
+ β

∥∥Ak
f

∥∥
ETR

) (6)

Thus, the original tensor optimization problem can be
transformed into n3 independent matrix optimization prob-
lems as follows:

argmin
Gk
f

1

2

∥∥Gk
f −Ak

f

∥∥2
F
+ β

∥∥Ak
f

∥∥
ETR

, (7)

for 1 ≤ k ≤ n3.
Here, the SVD of Ak

f is Ak
f = Uk

f Sk
f (Vk

f )
H . According

to Lemma 1, the optimal solution of Eq. (7) is

G∗k
f = Uk

f Proxf,β(Sk
f )(Vk

f )
H , (8)

where Proxf,β(Sk
f (i, i)) is given by solving the following

problem:

Proxf,β(Sk
f (i, i)) = argmin

x≥0

1

2
(x− Sk

f (i, i))
2 + βf(x)

(9)
where f(x) = eδ

2
x

δ+x . □
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B. Proofs of Theorem 2

Theorem 2. Let {Pk = (Zv
k,E

v
k,A

v
k,Y

v
k,Wk,Gk)}∞k=1

be the sequence generated by the Algorithm 1, then the se-
quence {Pk} meets the following two principles:

1). {Pk} is bounded;

2). Any accumulation point of {Pk} is a KKT point of the
Algorithm 1.

To prove Theorem 2, we first introduce two important
lemmas.

Lemma 2. [5] Let H be a real Hilbert space endowed
with an inner product ⟨·, ·⟩, a norm ∥ · ∥ with the dual norm
∥ · ∥dual, and y ∈ ∂∥x∥, where ∂f(·) is the subgradient of
f(·). Then we have ∥y∥dual = 1 if x ̸= 0, and ∥y∥dual if
x = 0.

Lemma 3. [4] Suppose that F : Rm×n → R is defined
as F (X) = f ◦ σ(X) = f(σ1(X), . . . , σr(X)), where
X = UDiag(σ(X))VT is SVD of matrix X ∈ Rm×n, r =
min(m,n), and f(·) : Rr → R be differentiable and ab-
solutely symmetric at σ(X). Then, the subdifferential of
F (X) at X is

∂F (X)

∂X
= UDiag(∂f(σ(X)))VT , (10)

where ∂f(σ(X)) = (∂f(σ1(x))
∂X ), . . . , ∂f(σr(x))

∂X ).

Proof 1). Proof of 1st part: On the k + 1 iteration, from
the updating rule of Ev

k+1, the first-order optimal condition
should be satisfied.

0 = α∂
∥∥Ev

k+1

∥∥
2,1

+ µk(E
v
k+1 − (Xv − Zv

k+1A
v +Yv

k/µk))

= α∂
∥∥Ev

k+1

∥∥
2,1

−Yv
k+1,

(11)

Thus, we have

1

α
[Yv

k+1]:,j = ∂
∥∥[Ev

k+1]:,j
∥∥
2
, (12)

where [Yv
k+1]:,j and [Ev

k+1]:,j are the j-th columns of
Yv

k+1 and Ev
k+1. And the ℓ2 norm is self-dual, so based

on the Lemma 2, we have
∥∥ 1
α [Y

v
k+1]:,j

∥∥
2
≥ 1. So the se-

quence {Yv
k+1} is bounded.

Then, we prove the sequence {Wk+1} is bounded. Ac-
cording to the updating rule of G, the first-order optimality
condition holds

∂ ∥Gk+1∥ETR = Wt+1. (13)

Let U ∗ S ∗ VT be the t-SVD of tensor G. According to
the Lemma 3 and definition of ETR, we have:

∥∂ ∥Gk+1∥ETR∥
2
F

=

∥∥∥∥ 1

n3
U ∗ ifft(∂(Sf ), [], 3) ∗ VT

∥∥∥∥2
F

=
1

n3
3

∥∂f(Sf )∥2F

≤ 1

n3
3

n3∑
i=1

min(n1,n2)∑
j=1

[∂f(Sv
f (j, j))]

2

≤ e2δ
2

min(n1, n2)

δ2n2
3

(14)

where the second inequality is by the fact ∂f(x) ≤ eδ
2

δ ,

and f(x) = eδ
2
x

δ+x is our rank approximation function.
So ∂ ∥Gk+1∥ETR is bounded, meanwhile the sequence
{Wk+1} is also bounded.

Moreover, from the iterative method in the algorithm of
solving ASR-ETR, we can deduce

Lµk,ρk
(Zv

k+1,E
v
k+1,A

v
k+1,Gk+1,Y

v
k,Wk)

≤ Lµk,ρk
(Zv

k,E
v
k,A

v
k,A

v
k,Gk,Y

v
k,Wk)

= Lµk−1,ρk−1
(Zv

k,E
v
k,A

v
k,Gk,Y

v
k−1,Wk−1)

+
ρk + ρk−1

2ρ2k−1

∥Wk −Wk−1∥2F

+
µk + µk−1

2µ2
k−1

m∑
v=1

∥∥Yv
k −Yv

k−1

∥∥2
F
,

(15)

Thus, summing two sides of (15) form k = 1 to n,

Lµk,ρk
(Zv

k+1,E
v
k+1,A

v
k+1,Gk+1,Y

v
k,Wk)

≤ Lµ0,ρ0(Z
v
1,E

v
1,A

v
1,G1,Y

v
0 ,W0)

+

n∑
k=1

ρk + ρk−1

2ρ2k−1

∥Wk −Wk−1∥2F

+

n∑
k=1

(
µk + µk−1

2µ2
k−1

m∑
v=1

∥∥Yv
k −Yv

k−1

∥∥2
F

) (16)

Observe that

n∑
k=1

µk + µk+1

2µ2
k−1

< ∞,

n∑
k=1

ρk + ρk+1

2ρ2k−1

< ∞ (17)

Note that Lµ0,ρ0(Z
v
1,E

v
1,A

v
1,G1,Y

v
0 ,W0) is fi-

nite, and sequence {Yv
k}, {Wk},

∑n
k=1

µk+µk+1

2µ2
k−1

and
∑n

k=1
ρk+ρk+1

2ρ2
k−1

are all bounded. So

Lµk
(Zv

k+1,E
v
k+1,A

v
k+1,Gk+1,Y

v
k,Wk) is bounded.



Notice

Lµk,ρk
(Zv

k+1,E
v
k+1,A

v
k+1,Gk+1,Y

v
k,Wk)

= ∥Gk+1∥ETR + α ∥Ek+1∥2,1

+ γ

m∑
v=1

Tr(ZvLv(Zv)T )

+

m∑
v=1

(⟨Yv
k,X

v − Zv
k+1A

v
k+1 −Ev

k+1⟩

+
µk

2

∥∥Xv − Zv
k+1A

v
k+1 −Ev

k+1

∥∥2
F
)

+ ⟨Wk,Zk+1 − Gk+1⟩+
ρk
2

∥Zk+1 − Gk+1∥2F ,

(18)

and each term of (18) is nonnegative, due to the bound-
edness of Lµk

(Zv
k+1,E

v
k+1,A

v
k+1,Gk+1,Y

v
k,Wk), we can

deduce each term of (18) is bounded. So the boundedness
of ∥Gk+1∥ETR implies that all singular values of Gk+1 are
bounded. Furthermore, based on the following equation

∥Gk+1∥2F =
1

n3
∥Gf,k+1∥2F =

1

n3

n3∑
i=1

min(n1,n2)∑
j=1

(Si
f (j, j))

2,

(19)
we can derive the sequence {Gk+1} is bounded, then, it is
easy to prove the boundedness of {Zk+1} and {Ak+1}.

Therefore, we can conclude that the sequence {Pk =
(Zv

k,E
v
k,A

v
k,Y

v
k,Wk,Gk)}∞k=1 generated by the Algo-

rithm 1.
2). Proof of 2nd part: According to Weierstrass-Bolzano

theorem [1], there is at least one accumulation point of the
sequence {Pk}∞k=1, we denote one of the points as P∗. Then
we have

lim
k→∞

(Zv
k,E

v
k,A

v
k,Y

v
k,Wk,Gk) = (Zv

∗,E
v
∗,A

v
∗,Y

v
∗ ,W∗,G∗).

(20)
Form the updating rule of W and Yv , we have the fol-

lowing equations:

Xv − Zv
k+1A

v
K+1 −Ev

k+1 = (Yv
k+1 −Yv

k)/µt,

Zk+1 − Gk+1 = (Wk+1 −Wk)/ρt.
(21)

According the boundedness of sequences {Wk} and
{Yv

k}, and the fact limk→∞ µk = ∞, we have:

lim
k→∞

Xv − Zv
k+1A

v
K+1 −Ev

k+1 = lim
k→∞

(Yv
k+1 −Yv

k)/µt = 0,

lim
k→∞

Zk+1 − Gk+1 = lim
k→∞

(Wk+1 −Wk)/ρt = 0,

(22)
then, we can obtain

Xv − Zv
∗A

v
∗ −Ev

∗ = 0, Z∗ − G∗ = 0. (23)

Furthermore, due to the first-order optimality conditions
of Ev

k+1 and Gk+1, we can deduce:

0 = α∂
∥∥Ev

k+1

∥∥
2,1

−Yv
k+1 ⇒ Yv

∗ = α∂ ∥Ev
∗∥2,1

0 = ∂ ∥Gk+1∥ETR −Wk+1 ⇒ W∗ = ∂ ∥G∗∥ETR

(24)

Thus, the accumulation point P∗ of sequence {Pk}∞k=1

generated by the algorithm of solving ASR-ETR satisfied
the KKT condition. □

C. More Experiment Results
In this part, we complete the results of all seven data sets.
Influence of Enhanced Tensor Rank: We complete the

effect of the Enhanced Tensor Rank (ETR) of all seven data
sets with Fig. 1, and we can observe that the parameter has
a significant effect on the clustering results. The best clus-
tering results of NGs, BBCSport, Caltech101-all, Aloi-100,
CIFAR10, and Noisy MNIST are obtained when δ = 0.1,
and CCV peaks at δ = 10−4.

Anchor Analysis: We complete the anchor analysis of
all seven data sets with Fig. 2, it is clear to observe that
the clustering results are stable under different anchors on
all seven data sets, which demonstrates that our anchor-
representation strategy is robust to the number of anchors,
and it is not necessary to use numerous anchors for cluster-
ing.

Convergence Analysis: We complete the convergence
analysis of all seven data sets with Fig. 3. As shown in
Fig. 3, the values of RE and ME rapidly tend to 0 within
10 steps and remain stable, which indicates the excellent
convergence property of our ASR-ETR.
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Figure 1: The performance (i.e., ACC and NMI) of ASR-ETR with varying parameter δ on seven data sets.
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Figure 2: Anchor Analysis: The performance (i.e., ACC and NMI) of ASR-ETR on seven data sets by varying the number
of anchors.
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Figure 3: Convergence Analysis: The stop criteria (i.e., RE and ME) variation curves on seven data sets.
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