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A. Dataset Details
We describe the dataset details (one public and three

private multi-organ datasets) used in our experiment here.
For the public dataset TotalSegmentator [7], it consists of
1204 CT scans of different body parts with total 103 la-
beled anatomical structures (26 major organs, 59 bone in-
stances, 10 muscles, and 8 vessels). Note that the face
label is removed as it is an artificially created label for
patient de-identification purpose after blurring the facial
area. The detailed organ 103 organ instance list can be
found in the link https://github.com/wasserth/
TotalSegmentator. For the three in-house multi-organ
datasets, they are head & neck organ dataset (denoted as
HNOrgan), chest organ dataset (denoted as ChestOrgan)
and dedicated esophageal cancer dataset (denoted as EsoOr-
gan). In HNOrgan, each of the 447 head and neck CT scans
has 13 head and neck organs labeled: brainstem, eye (left
and right), lens (left and right), optic nerve (left and right),
optic chiasm, parotid (left and right), spinal cord, tem-
poromandibular joint (TMJoint, left and right). ChestOr-
gan contains 292 chest CT scans with 31 chest anatomi-
cal structures annotated including major organs, muscles,
arteries and veins. The detailed list is as follow: esopha-
gus, sternum, thyroid left, thyroid right, trachea, bronchus
left, bronchus right, anterior cervical muscle, scalenus mus-
cle, scalenus anterior muscle, sternocleidomastoid mus-
cle, ascending aorta, descending aorta, aorta arch, common
carotid artery left, common carotid artery right, pulmonary
artery, subclavian artery left, subclavian artery right, ver-

tebral artery left, vertebral artery right, azygos vein, bra-
chiocephalic vein left, brachiocephalic vein right, internal
jugular vein left, internal jugular vein right, pulmonary
vein, subclavian vein left, subclavian vein right, inferior
vena cava, superior vena cava. There are four organs in
ChestOrgan that are overlapped with organs in TotalSeg-
mentator (esophagus, pulmonary artery, superior vena cava,
trachea). The EsoOrgan collects 640 diagnostic CT scans of
advanced esophageal cancer patient where only the esoph-
agus is labeled. By combining all datasets, we have total
103+27+13 organ classes from 2583 unique patients. For
each of these four datasets, 20% are randomly chosen as
the testing set, while the rest is used as training + validation.
Detailed training/validation dataset split in the decoder op-
timization module can be found in the Implementation De-
tails section of this supplementary material.

In addition, for the purpose of training and validating our
abnormality detection module, we further collect CT scans
from 304 esophageal (private) and 625 lung cancer (pub-
lic with tumor labels) patients where the 3D tumor masks
are delineated at the pixel level. These combine as the
lung/esophageal tumor classes from additional 929 patients.

B. Implementation Details

The default nnUNet backbone in 3D full resolution set-
ting is adopted in our work, including a 6-block encoding
path and a 5-block decoding path. Each encoding block
consists of the following consecutive operations: a convo-
lution, an instance normalization, a Leaky ReLU unit, fol-
lowed by max-pooling operator.

The total training epoch for the baseline TotalSegmenta-
tor is 8000 with 250 iterations per epoch, and the training
epoch for each of the in-house datasets (served as perfor-
mance upper bound) is 1000 with 250 iterations per epoch.
The batch size is 2. The optimizer is stochastic gradient
descent with a Polynomial learning rate policy. The initial
learning rate is 0.01 with a Nesterov momentum of 0.99.
Default “moreDA” data augmentation is adopted, e.g., hor-
izontal flipping, random rotation in the x-y plane with ±10
degrees, intensity scaling with a ratio between [0.75, 1.25],
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adding Gaussian noise with zero mean and [0, 0.1] vari-
ance. The total average training time is 2.5 GPU days per
1000 epochs. For model inference, the average running time
for the proposed framework, before the decoding path op-
timization, is approximately 15 minutes per patient. After
the decoding path optimization, the average inference time
is less than 5 minutes per patient. All models are developed
using PyTorch and trained on one NVIDIA A100 GPU.
Decoder Optimization – NAS Setting. For NAS, we di-
vide each dataset into 1) 60% for network training, 2) 30%
for NAS training, and 3) 10% for validation and ablation
evaluation. To train the learnable weight for selecting the
architecture of each decoding block, we first fix the con-
volution kernel selection weight to 1

Ct
for 40% of the to-

tal epochs, where Ct denotes the number of classes of the
tth task. Then we alternatively update the convolution ker-
nel selection weight and the decoder parameters for the
rest epochs. The initial learning rate is set to 0.01 for all
tasks. The learning rate is decayed following the Polyno-
mial learning rate policy. After NAS training is complete,
we follow the same ‘moreDA’ data augmentation scheme
and retrain the searched decoding path from scratch using
the re-divided dataset in a 4:1 ‘training-validation’ ratio.
The searched decoding blocks for each task are shown in
Table B.1.
Decoder Optimization – Pruning Setting. We perform
a block-wise teacher-student knowledge distillation (KD),
aiming to further compress the decoder by replacing the
searched convolutional kernels with the projection kernels.
The mean-square error loss is used to match the feature map
outputs of the teacher block to the student block. To ease the
optimization difficulty, we first distill the deeper decoding
blocks (lower resolution), then move to shallower blocks.
Once the KD training of the deeper block is saturated, we
freeze the deeper student blocks and move to the shallower
ones. When conducting this block-wise KD, the shallower
convolutional block needs to choose if to receive output fea-
ture maps from the deeper teacher blocks or those from the
student block. Under this setting, if the feature map dif-
ference from previous teacher and student block is large,
it would affect the subsequent feature response in the next
shallower block causing the degenerated segmentation. To
conquer this, we employ a simple yet effective approach:
Once the distillation of the student block is finished, we use
a smaller learning rate (e.g., 0.1×) and finetune the shal-
lower teacher block using the deeper student block’s output
feature maps. We monitor the before-and-after performance
drop. If the drop is less than 1% in terms of Dice score,
we keep the deeper student block, otherwise, we restore the
teacher block. To speed up the training process, block-wise
side supervision is also used during training. The pruned
decoder for each task is demonstrated in Table B.1.
Body-part and Anomaly-aware Decoder Merging. To

generate the final 143-class organ segmentation output, we
need to combine and merge the predictions from all de-
coders. There are two major issues in this step. First, since
each training dataset/task often covers a specific body part,
the task-specific decoder might generate false positives in
body parts that are not covered in this specific dataset (be-
cause that decoder never sees other anatomic regions). We
propose a straightforward yet effective solution to reduce
these false positives due to the body part coverage: for each
decoder, we pre-compute the body part coverage rate using
all the data in this dataset/task. In this way, for a specific
decoder, voxels outside the covered body parts would have
a lower/zero weight, and we can use this weight to signif-
icantly decrease the confidence score of the false positive
segmentations out of the covered body parts. Specifically,
we first generate the body part map using an automated
body part regression algorithm [8]. Then, by overlapping
the bounding box of all labeled organs to the body part map,
we compute the volume-wise overlapping ratio between the
bounding box and the body part map. Then, a body part
distribution map is generated for a patient, e.g., 80% in the
chest, and 20% in the abdomen. This calculation is repeated
for all patients in the dataset, and finally averaged to get a
pre-computed body part distribution map Ŷ t

β . The detailed
body part distributions for the three in-house datasets are
illustrated in Table B.2.

The second issue is that some decoders might not see the
patients with abnormalities (e.g., tumors). Hence, the pre-
dictions may have false segmentation in the anomaly region.
To resolve this problem, we first supplement the framework
with an anomaly segmentation head. In our work, we use
the esophageal and lung tumor dataset to train this head as
an illustration. More abnormality datasets can be utilized,
such as DeepLesion [9]. Then, we exploit the tumor predic-
tions Ŷ ϵ to generate an anomaly weighting map. The av-
eraged tumor size pϵ is pre-calculated using the annotated
tumor mask and used as the standard deviation of a Gaus-
sian filter of zero-mean to further smooth the tumor predic-
tion Ŷ ϵ. Here, we assume that, at location j, the prediction
Ŷ t(j) of the tth decoder is less confident if Ŷ ϵ(j) is of high
value.

To combine the predictions, we perform a voxel-wise se-
lection by choosing the most confident prediction from all
decoding heads, considering both the body part distribution
map and the anomaly map. As the entropy function pro-
duces the highest value when the input closes to 0.5 (the
most uncertain prediction), we could find the most confi-
dent prediction when the input closes to 0 or 1. Eq. (3) in
the main text is used to combine the body part map Ŷ t

β and
anomaly distribution map Ŷ ϵ. When there is no tumor pre-
diction Ŷ ϵ(j) = 0 and the organ prediction is within the
decoder’s body part distribution range Ŷ t

β (j) = 1, the out-
put score is considered as confident and sets M t(j) = 0.



Table B.1. The detailed auto-searched and pruned decoding architecture based on nnUNet. Note that decoder block 5 refers to the deepest
decoding block.

Decoder Block 5 Decoder Block 4 Decoder Block 3 Decoder Block 2 Decoder Block 1

TotalSeg NAS P3D P3D 2D P3D 2D
Pruned P3D P3D 2D Projection 2D

ChestOrgan NAS 3D P3D P3D 2D 2D
Pruned Projection P3D P3D 2D 2D

HNOrgan NAS 3D P3D 3D P3D P3D
Pruned Projection P3d 3D P3D P3D

EsoOrgan NAS P3D 2D Projection 2D Projection
Pruned Projection Projection Projection Projection Projection

Table B.2. The body part distributions of the in-house datasets.
Head Chest Abdomen Pelvic

ChestOrgan 8.2% 89.4% 2.4% 0%
HNOrgan 96.5% 3.5% 0% 0%
EsoOrgan 0% 96.3% 3.7% 0%

On the other hand, the other states are considered uncertain
and set M t(j) = 0.5. The confidence map is generated
using Eq. (4) of the main text. For a voxel at location j, us-
ing Eq. (5), we collect the confidence values from all tasks
whose foreground prediction is not in the background. The
final output class Ŷ(j) is determined using the prediction
Ŷ t(j), of which with the smallest Ht(j).

C. Additional Ablation Results and Analysis
In our main text, we have briefly demonstrated and dis-

cussed the final segmentation performance and forgetting
curve of our method and other comparison methods at each
continual learning step in Table 1 and Fig 4 (Section 4.3).
Here, we show the detailed numeric results of Fig 4 in Fig
C.1 and Table C.1 and provide more in-depth discussion on
results achieved by our model and other comparison meth-
ods.

First, the mean DSC and the forgetting rate in each
dataset/step of two CSS orders are detailed in Table C.1.
The mean DSC and average forgetting rate over all 143
organs at the last step is also shown. Besides the obser-
vations discussed in the main text, several additional find-
ings can be noticed. First, the slight decrease of DSC of
our method in the sub-figures of Fig 4 (mean DSC over all
learned organs at the current step) is not due to our model
forgetting, but simply because the achieved DSC values are
lower in new datasets/steps. E.g., the upper bound mean
DSC in ChestOrgan dataset is only 78.45% (as compared
to 93.24% in TotalSegmentator dataset). As shown the last
three rows of two CSS order in Table C.1, our method com-
pletely avoids forgetting of old knowledge when continually
learning new dataset/task because of our proposed frame-
work (frozen general encoder, light-weighted decoders, and
body-part and anomaly-aware merging). In contrast, other
distillation-based CSS methods all experienced severe for-
getting with more than 50% forgetting rate at the last step.

Second, regarding the step-wise results of comparison
methods. It is observed that methods based on the output-
level knowledge distillation and MiB losses (MiB [1],
ILT [5] and LISMO [4]) suffer from catastrophic forgetting
after the last step (overall mean DSC < 25% and forgetting
rate > 64%). In contrast, although PLOP [3] also has a large
forgetting rate (about 50%), the overall performance is no-
ticeably better as compared to the other three methods. For
instance, the overall mean DSC is 39.01% for PLOP in CSS
order A, which is at least 3 times higher than that for MiB,
ILT and LISMO. The increased ability to keep old knowl-
edge in PLOP might come from the applied entropy-based
pseudo-labeling and the knowledge distillation on interme-
diate features in both encoder and decoder.

Third, regarding two continual segmentation orders, the
main difference is the learning order of ChestOrgan and
HNOrgan: order A first learns ChestOrgan in step-2, then
HNOrgan in step-3, while order B exchanges the dataset in
step-2 and 3. It is observed in Table C.1 and Fig C.1 that
the comparison methods forgetting rate at learning step-2
for the TotalSegmentator dataset is higher in order B than
that in order A. E.g., TotalSegmentator DSC of MiB [1]
at step-2 is decreased from 93.24% → 21.96% in order B
vs. from 93.24% → 45.80% in order A. Notice that order
B learns the HNOrgan right after TotalSegmentator at step-
2, and HNOrgan contains CT images only focusing in the
head and neck region, where TotalSegmentator has organs
mostly labeled in the chest, abdomen, and pelvic regions.
As a result, MiB can no longer see the chest, abdomen, and
pelvic regions at step-2, which causes catastrophic forget-
ting in these body parts resulting in a significant perfor-
mance drop. Instead, order A learns the ChestOrgan at
step-2, and ChestOrgan covers all the chest and neck re-
gions as well as most parts of the abdomen. Hence, MiB is
still able to rehearse some old knowledge over these over-
lapping body parts so that the forgetting rate is reduced
as compared to that in order B. A similar trend can be
found in the forgetting curves of ChestOrgan and HNOr-
gan. These findings show that for the multi-organ con-
tinual segmentation, the forgetting rate of other compari-
son methods is closely related to the overlapping range of
body parts in each dataset/step. In contrast, our proposed



Table C.1. Mean DSC (%, ↑) and forgetting rate (%, ↓) of our method and other comparison methods in each dataset/step of two con-
tinual segmentation orders. The last column ‘All Learned Classes’ lists the mean DSC and average forgetting rate [2] over all learned
organs/classes at each step. The DSC in TotalSegmentator at step 1 of all comparison methods is the upper bound 93.24%, while DSC for
our method is slightly lower with 92.98% at step 1 due to the decoder compression/pruning. (Sub-figures in Fig. 4 from left to right are
corresponding to the numeric results in column ‘All Learned Classes’, ‘TotalSeg’, ‘ChestOrgan’ and ‘HNOrgan’ of this table.)

TotalSeg (103) ChestOrgan (31) HNOrgan (13) EsoOrgan (1) All Learned Classes
Methods Step DSC Forget DSC Forget DSC Forget DSC Forget DSC Avg. Forget

upper bound 93.24 — 78.45 — 84.35 — 87.15 — 89.02 —

Order A: TotalSeg → ChestOrgan → HNOrgan → EsoOrgan

2 45.80 50.87 78.40 — 50.56 50.87
3 11.68 87.48 25.66 67.27 84.22 — 20.86 77.37MiB [1]
4 7.65 91.80 19.24 75.46 6.37 92.43 86.92 — 8.51 86.56

2 48.50 47.98 77.78 — 54.40 47.98
3 13.68 85.33 28.74 63.04 84.21 — 23.08 74.19ILT† [5]
4 10.87 88.34 27.87 64.17 6.39 92.42 85.75 — 11.99 81.64

2 59.13 36.59 76.52 — 62.40 36.59
3 39.46 57.68 49.19 35.72 83.17 — 45.10 46.70PLOP [3]
4 37.30 59.99 51.74 32.38 25.38 69.48 82.90 — 39.01 53.95

2 52.57 43.62 78.48 — 57.74 43.62
3 13.59 85.42 29.05 62.99 84.36 — 22.86 74.21LISMO [4]
4 10.82 88.40 28.24 64.02 6.30 92.54 87.12 — 12.11 81.65

2 92.98 0.00 78.26 — 88.27 0.00
3 92.98 0.00 78.26 0.00 83.97 — 87.88 0.00Ours
4 92.98 0.00 78.26 0.00 83.97 0.00 86.94 — 87.87 0.00

Order B: TotalSeg → HNOrgan → ChestOrgan → EsoOrgan

2 21.96 76.45 84.49 — 29.42 76.45
3 10.72 88.50 78.46 — 6.38 92.45 23.85 90.48MiB [1]
4 10.35 88.90 65.63 16.35 6.29 92.55 86.79 — 20.20 65.94

2 21.62 76.81 84.25 — 29.09 76.81
3 14.10 84.88 78.02 — 8.48 89.93 26.13 87.41ILT† [5]
4 13.12 85.93 67.28 13.76 6.18 92.66 85.52 — 22.44 64.12

2 45.11 51.62 83.59 — 49.70 50.87
3 31.90 65.79 76.13 — 17.56 78.99 38.99 72.39PLOP [3]
4 30.82 66.95 70.18 7.81 15.77 81.13 83.41 — 36.63 51.96

2 24.36 73.88 84.35 — 31.51 73.88
3 15.08 83.83 78.47 — 7.85 90.69 26.84 87.26LISMO [4]
4 14.04 84.94 67.19 14.37 6.15 92.71 86.87 — 23.09 64.01

2 92.98 0.00 83.97 — 91.27 0.00
3 92.98 0.00 78.26 — 83.97 0.00 87.88 0.00Ours
4 92.98 0.00 78.26 0.00 83.97 0.00 86.94 — 87.87 0.00

architectural-based method is learning-order and body-part
invariant, which facilitates the model deployment in clinical
practice.

Last, we evaluate the impact of Alternative General En-
coders. We recommended starting with TotalSegentator as
it covers most body parts for comprehensive feature extrac-
tion. Alternatively, other datasets can be used as the starting
dataset to train General Encoder. We trained the General
Encoder using the ChestOrgan dataset. A tolerable perfor-
mance drop (<1% Dice) is observed in the CSS Order A
final results. The assumed reason is that the torso region in-
cludes diverse anatomies and covers most of the body parts,

and hence exhibits similar performance as the one trained
using the TotalSegmentator dataset. Yet, when using the
HNOrgan dataset to train the General Encoder, we notice a
markedly 3% Dice drop in the final results.

D. Detailed Results of Individual Organs

We provide detailed organ segmentation results of our
final model as well as the upper bound nnUNet perfor-
mance trained and evaluated on TotalSegmentator, ChestOr-
gan, HNOrgan datasets (shown in Table D.2, D.3, D.4). The
final performance on the EsoOrgan dataet has been reported
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Figure C.1. The mean DSCs over each dataset at each step of Order A (solid line) and Order B (dashed line).

Table D.1. TotalSegmentator [7] label list of each organ group.

TotalSeg Organ Group TotalSeg Organ Labels

Main Chest Organs 13—17, 42—48
Cardiovascular Vessels 7, 8, 9, 49, 51, 52, 53, 54
Excretory Organs 2, 3, 55, 57, 104
Main Abdomen Organs 1, 4, 5, 6, 10, 11, 12, 56
Head 50 (‘face’-93 is exluded)
Vertebraes 18—41
Ribs 58—81
Other Bones 82—92
Muscles 94—103

in the Table 1 of the main text. For organs in TotalSegmen-
tator, due to the large amount of organs, we choose to group
the 103 whole body organs into eight anatomical groups
(Table D.1) and report the average scores of each group (see
Table D.2). As shown in those tables, our final model per-
forms closely to the upper bound accuracy when training
separate nnUNet models on each dataset. There are no or-
gans experiencing a large performance drop. The overall
slightly drop in DSC and increasing in HD95/ASD is be-
cause of the decoder pruning process.

E. Reimplementation of Comparison Methods
For all comparison methods, we start with the same pre-

trained nnUNet model on TotalSegmentator dataset, which
has been trained using 3D nnUNet setting for 8000 epochs,
with 250 iterations per epoch and initial learning rate 0.01.

Table D.2. Mean DSC (%, ↑), HD95 (mm, ↓) and ASD (mm, ↓) of
8 anatomical organ groups in TotalSeg (total 103 full body organs)
of upper bound model and our final model.

TotalSeg Organ Group Upper Bound Ours

DSC HD95 ASD DSC HD95 ASD

Chest Main Organ 96.66 1.71 0.35 95.62 2.54 0.43
Cardiovascular Vessels 91.75 2.33 0.55 91.97 2.96 0.74
Excretory System 93.28 4.24 1.22 93.53 4.45 1.28
Abdomen Main Organ 89.44 3.45 0.80 91.05 3.96 0.88
Head 94.51 2.44 0.62 94.61 3.02 0.69
Vertebraes 92.94 2.01 0.48 92.65 2.92 0.68
Ribs 91.54 4.24 1.06 91.49 5.15 1.20
Other Bones 95.02 6.94 2.08 93.14 7.85 2.27
Muscles 96.09 2.17 0.38 95.92 2.98 0.54

After that, the model is finetuned sequentially on contin-
ual segmentation tasks (ChestOrgan, HNOrgan and EsoOr-
gan), where each dataset are finetuned for 500 epochs, with
250 iterations per epoch and initial learning rate 0.005. All
the other nnUNet settings, such as data augmentation, re-
main the same as our implementation. Moverover, since
our segmentation datasets/tasks are 3D CT scans (different
from the previous continual segmentation works in natural
images), adjustments to these comparison methods are re-
quired (extending 2D methods to 3D), as well as transfer-
ring their implementations to the nnUNet framework. We
describe the detailed re-implementation of previous meth-
ods, especially our modifications, in the following subsec-
tions.
MiB. MiB [1] proposes two marginal losses, or unbiased
losses to solve the background shift issue in continual seg-



Table D.3. Mean and standard deviation of DSC (%, ↑), HD95 (mm, ↓) and ASD (mm, ↓) of each ChestOrgan organ (total 31 chest organs)
of upper bound model and our final model. L and R refer to the left and right.

ChestOrgan Upper Bound Ours

DSC HD95 ASD DSC HD95 ASD

Esophagus 85.41±4.12 4.93±3.32 0.68±0.42 85.22±4.30 5.78±2.81 0.67±0.34
Sternum 90.30±3.27 5.07±5.00 1.16±1.07 90.26±3.64 5.83±5.33 1.18±2.07
Thyroid L 84.13±4.71 2.87±1.36 0.66±0.36 84.10±3.98 3.54±1.23 0.73±0.33
Thyroid R 82.79±6.28 3.39±2.34 0.79±0.41 82.75±5.32 4.18±1.89 0.88±0.38
Trachea 93.74±2.19 4.74±3.45 1.09±0.88 93.68±1.83 5.45±2.76 1.03±0.69
Bronchus L 86.53±4.39 4.84±2.55 0.48±0.33 86.34±5.15 5.45±2.29 0.44±0.29
Bronchus R 75.86±13.79 9.18±7.51 2.35±2.87 75.88±13.41 10.42±7.67 2.41±2.70
Anterior cervical muscle 69.23±8.05 6.31±5.67 1.34±1.22 69.02±6.79 7.08±4.54 1.39±1.20
Scalenus muscle 74.26±4.42 5.83±3.79 0.83±0.38 74.24±5.18 6.98±3.86 0.79±0.38
Scalenus anterior muscle 77.89±6.34 4.37±3.46 0.95±1.03 77.82±6.89 5.04±3.17 0.83±0.83
sternocleidomastoid muscle 82.17±3.92 4.01±2.89 1.16±1.11 82.10±3.35 4.89±3.23 1.06±0.81
common carotid artery L 78.09±7.65 9.33±17.74 2.17±4.33 77.97±8.21 9.98±16.47 2.28±4.33
common carotid artery R 73.92±11.08 12.43±16.29 2.84±4.72 73.77±10.63 13.37±17.83 2.90±4.81
Pulmonary artery 90.11±3.64 6.64±3.09 1.28±0.67 89.93±5.46 7.11±3.97 1.13±0.77
Subclavian artery L 71.79±9.26 20.26±20.29 2.37±3.40 71.78±9.50 23.15±22.32 2.28±3.46
Subclavian artery R 80.03±5.87 11.93±13.24 2.04±2.11 79.97±6.07 12.14±13.72 2.19±2.90
Vertebral artery L 47.72±19.66 20.25±21.22 6.65±11.83 46.62±20.32 21.27±20.94 6.51±11.73
Vertebral artery R 45.28±18.38 19.90±21.07 6.33±11.35 42.66±17.08 20.81±17.43 6.40±11.12
Ascending aorta 93.08±2.54 5.41±2.40 1.39±0.77 93.05±2.17 6.25±2.50 1.34±0.97
Descending aorta 97.13±1.75 3.21±2.21 0.72±0.37 97.05±0.94 3.73±1.98 0.67±0.35
Aorta arch 92.12±9.08 4.23±2.72 1.25±1.42 92.11±7.53 4.93±2.80 1.27±1.42
Azygos vein 73.29±11.53 8.99±14.07 1.68±3.58 73.25±10.02 9.79±14.16 1.65±3.53
brachiocephalic vein L 85.80±5.57 3.27±2.35 0.35±0.29 85.73±5.00 4.13±2.76 0.35±0.26
brachiocephalic vein R 85.83±5.07 4.71±1.88 0.87±0.54 85.82±5.70 5.30±2.37 0.89±0.57
internal jugular vein L 74.66±14.57 12.77±16.31 2.88±4.51 74.63±14.41 14.19±14.63 2.90±3.81
internal jugular vein R 78.28±8.73 12.03±16.86 2.95±3.68 78.24±8.19 15.86±13.63 3.02±3.52
Pulmonary vein 70.62±8.24 7.04±2.80 1.53±0.67 70.57±7.83 7.81±2.91 1.49±0.76
Subclavian vein L 63.32±14.72 9.64±6.69 1.99±1.90 63.32±15.21 10.14±7.88 2.00±1.71
Subclavian vein R 60.59±12.21 11.62±8.13 2.75±2.35 60.60±12.92 13.89±10.63 2.83±2.20
Inferior vena cava 82.51±6.23 7.95±5.58 1.69±1.13 82.45±5.82 9.01±5.56 1.71±1.25
Superior vena cava 85.38±3.83 5.85±3.55 1.36±0.88 85.29±3.85 6.60±3.45 1.33±0.75

Table D.4. Mean and standard deviation of DSC (%, ↑), HD95 (mm, ↓) and ASD (mm, ↓) of each HNOrgan organ (total 13 head-neck
organs) of upper bound model and our final model. L and R refer to the left and right.

HNOrgan Upper Bound Ours

DSC HD95 ASD DSC HD95 ASD

BrainStem 91.42±2.47 2.93±1.15 0.76±0.32 90.89±2.38 2.65±1.37 0.74±0.36
Eye L 92.32±1.73 1.57±0.60 0.36±0.11 92.25±1.69 1.50±0.48 0.33±0.12
Eye R 91.99±1.49 1.68±0.54 0.40±0.10 91.95±1.19 1.63±0.92 0.49±0.21
Lens L 81.49±10.64 1.64±0.90 0.53±0.47 80.33±8.81 1.55±0.89 0.47±0.50
Lens R 84.16±8.35 1.39±0.70 0.40±0.30 82.46±6.33 1.23±1.12 0.36±0.36
Optic Chiasm 67.04±13.34 3.73±1.66 1.03±0.65 66.60±13.29 3.59±1.91 0.96±0.71
Optic Nerve L 74.34±6.77 3.05±2.75 0.56±0.27 74.72±6.93 2.96±3.27 0.61±0.51
Optic Nerve R 75.15±6.47 2.64±0.80 0.51±0.30 73.64±7.07 2.49±1.18 0.56±0.35
Parotid L 91.32±3.01 3.13±1.72 0.75±0.33 91.09±3.08 2.90±2.10 0.76±0.32
Parotid R 90.93±2.87 3.22±1.94 0.86±0.46 90.94±2.97 3.03±2.10 0.86±0.67
TMJ L 81.55±9.42 2.10±1.06 0.56±0.47 82.14±9.33 1.87±1.19 0.52±0.65
TMJ R 84.81±8.57 1.85±1.06 0.43±0.39 84.70±9.28 1.69±0.93 0.42±0.50
Spinal cord 90.01±2.35 2.03±0.61 0.65±0.22 89.93±2.19 1.83±0.81 0.64±0.31

mentation in their original paper: unbiased cross-entropy
(UNCE) loss, which merges the probabilities of old classes
to the background label, and unbiased knowledge distilla-

tion (UNKD) loss, which merges the probabilities of all
new classes (belonging unseen classes of the old model)
to the background label. Notice that, the original unbi-



ased loss assumes that new classes from the current dataset
are completely disjoint with all the old classes, however,
this assumption is not holding in our datasets. E.g., To-
talSegmentator and ChestOrgan contain four overlapping
organs: inferior vena cava, trachea, esophagus and pul-
monary artery. Therefore, in order to re-implement MiB
losses in the nnUNet framework and make them compati-
bility with our datasets, we slightly modifies and general-
izes both unbiased losses to handle overlapping labels in
the continual learning setting. The modified UNCE loss is
as follows:

ℓθ
t

ce(x, y) = − 1

|I|
∑
i∈I

log q̃tx(i, yi) (1)

where:

q̃tx(i, c) =

{
qtx(i, c) if c ̸= b∑

k∈Yt−1\Ct
p
qtx(i, k) if c = b

(2)

Here, same notations referred to the original paper is used,
except Ct

p = Yt−1 ∪ Ct − b, which indicates the overlap-
ping classes (excluding background label) between current
dataset Ct and all the previous classes Yt−1 at the learning
step t. When calculating UNCE loss, we merge all the old
labels to the background except the overlapping classes.

Similarly, we adapt UNKD loss as:

ℓθ
t

kd(x, y) = − 1

|I|
∑
i∈I

∑
c∈Yt−1\Ct

p

qt−1
x (i, c) log q̂tx(i, yi)

(3)
where:

q̂tx(i, c) =

{
qtx(i, c) if c ̸= b∑

k∈Ct qtx(i, k) if c = b
(4)

In the above formula, overlapping organs from the old class
set are excluded so that the knowledge distillation works on
the real old classes that cannot be learned from the current
dataset.

Using two modified losses, we always train the model
with the latest labels and ignore the previously learned over-
lapping labels when overlapping organs occur. Thus, over-
lapping labels are trained directly using the cross-entropy
loss and merged to the background in the knowledge distil-
lation loss. In addition, we use the same hyperparameters
as the MiB setting: the weight of UNKD loss are set as 10
with balanced classifier initialization strategy.
ILT. ILT [5] originally first proposes the continual seman-
tic segmentation (CSS) protocol and provides a naive solu-
tion using an output-level knowledge distillation on the old
classes (L′

D) and a feature-level knowledge distillation on

the intermediate features from encoder (L′′
D). This method

leads to inferior performance and experienced severe for-
getting as compared to MiB and other CSS methods on
multiple natural image benchmarks [3, 6]. In order to im-
prove ILT performance on our datasets/tasks, we modifies
the original ILT setting and losses as follows: (1) ILT uses
a frozen encoder setting (EF ) together with L′

D, which is
similar to our general encoder method, therefore, we re-
implement ILT using this frozen encoder setting, as men-
tioned in the main paper; (2) since original ILT losses do
not alleviate the background shift issue and have a large
bias towards new classes (experiencing severe forgetting
even with the frozen encoder), we additionally apply the
MiB loss (Eq.2,4) to reinforce the decoder to preserve more
old knowledge. In short, our re-implemented ILT can be
treated as a frozen encoder version of MiB (EF +Lmib). Al-
though leading to an improved performance as compared to
the original ILT, this frozen encoder ILT version still has ob-
vious knowledge forgetting as shown in Table 1 of the main
text. This indicates that the frozen encoder with unbiased
output-level knowledge distillation is not sufficient to pre-
serve the old knowledge in CSS. In contrast, our proposed
framework (general encoder + light-weighted decoder) can
performance at the accuracy for the first time with real non-
forgetting in CSS.

PLOP. PLOP [3] is originally implemented for 2D im-
ages, especially its multi-scale local distillation loss based
on local POD. Local POD is a multi-scale feature pooling
strategy consisting of computing width and height-pooled
slices on multi-scale regions, which aims to better retain
both global and local spatial knowledge from the old model.
However, since our data are all 3D CT scans with an ad-
ditional depth dimension, we specifically extend the lo-
cal POD to higher dimensions when re-implementing the
method. Two pooling strategies can be adopted for the 3D
cases: (1) pooling 3D feature map along each single dimen-
sion and extracting three 2D projections along each axis:

Φ(x) =

(
1

H

H∑
h=1

x [h, :, :, :]

∥∥∥∥∥ 1

W

W∑
w=1

x [:, w, :, :]∥∥∥∥∥ 1

D

D∑
d=1

x [:, :, d, :]

)
∈ R(WD+HD+HW )×C

(5)

where notations follow the original PLOP paper. This pool-
ing method can preserve enough spatial information mean-
while providing some level of plasticity to the model. (2)
Pooling 3D feature map on two dimensions and only extract
1D projection along the remaining axis:



Φ(x) =

(
1

HW

H∑
h=1

W∑
w=1

x [h,w, :, :]

∥∥∥∥∥ 1

WD

W∑
w=1

D∑
d=1

x [:, w, d, :]∥∥∥∥∥ 1

HD

H∑
h=1

D∑
d=1

x [h, :, d, :]

)
∈ R(H+W+D)×C

(6)

This pooling strategy has similar feature shape, however,
when pooling on two axes together, most of the spatial
information are lost and POD loss cannot retain the old
knowledge. After comparing the performance using two
strategies, we select the former one, which better handles
the trade-off between model rigidity and plasticity.

For hyperparameters, the original paper uses the pod
weighting factor of 0.01, which is too large for the 3D pool-
ing case. Because the L2 norm of 3D pooled features is
more than 10 times larger than that of 2D pooled features.
In our experiments, we set this pod factor to 0.001. Other
hyperparameters are consistent with those used in the orig-
inal paper.
LISMO. The original LISMO [4] is designed based on
nnUNet framework, so we are able to directly re-implement
this method. We would like to mention several important
differences between our datasets and those used in LISMO.
In LISMO [4], it has a slightly improved result than MiB
when segmenting five large abdominal organs in their ex-
periment (using 3D low resolution of nnUNet). Under this
setup, all five abdominal organs could be seen in each 3D
training patch most of the time, which could frequently re-
inforce and rehearsal the model’s ability on unseen organs
in the current dataset through their memory module and
prototype matching loss. However, this is not the case in
our experiments, since many old organs are no longer able
to observe in the new dataset due to non-overlapping body
parts. E.g. abdominal organs cannot appear in the HNOr-
gan dataset. Moreover, the high resolution nnUNet version
is used to meet the high segmentation accuracy required
in practice and there are over 100 target organs spreading
among the whole body range, so our patch size is impos-
sible to cover most organs within each patch. Under this
situation, the prototype matching loss is not able to com-
pute on non-existing organs and the contrastive loss is not
sufficient to constraint the feature distributions of these or-
gans, which results in severe forgetting for the unobserved
organs in our experiment.

References
[1] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,

Elisa Ricci, and Barbara Caputo. Modeling the back-
ground for incremental learning in semantic segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9233–9242, 2020. 3, 4, 5

[2] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 532–547, 2018. 4

[3] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu
Cord. Plop: Learning without forgetting for continual se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4040–4050, 2021. 3, 4, 7

[4] Pengbo Liu, Xia Wang, Mengsi Fan, Hongli Pan, Minmin Yin,
Xiaohong Zhu, et al. Learning incrementally to segment mul-
tiple organs in a CT image. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 714–724. Springer, 2022. 3, 4, 8

[5] Umberto Michieli and Pietro Zanuttigh. Incremental learn-
ing techniques for semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019. 3, 4, 7

[6] Umberto Michieli and Pietro Zanuttigh. Continual semantic
segmentation via repulsion-attraction of sparse and disentan-
gled latent representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1114–1124, 2021. 7

[7] Jakob Wasserthal, Manfred Meyer, Hanns-Christian Breit,
Joshy Cyriac, Shan Yang, and Martin Segeroth. Totalsegmen-
tator: robust segmentation of 104 anatomical structures in ct
images. arXiv preprint arXiv:2208.05868, 2022. 1, 5

[8] Ke Yan, Le Lu, and Ronald M. Summers. Unsupervised body
part regression via spatially self-ordering convolutional neural
networks. In IEEE ISBI, pages 1022–2025, 2018. 2

[9] Ke Yan, Xiaosong Wang, Le Lu, and Ronald M Summers.
Deeplesion: automated mining of large-scale lesion annota-
tions and universal lesion detection with deep learning. Jour-
nal of medical imaging, 5(3):036501, 2018. 2


	. Dataset Details
	. Implementation Details
	. Additional Ablation Results and Analysis
	. Detailed Results of Individual Organs
	. Reimplementation of Comparison Methods

