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In this supplemental material, we present implementation
details (Section A) and additional results (Section B) as
complements of the main content.

A. Implementation Details
A.1. Architecture Design

To explore a generic and adaptive model that could inter-
polate frames from different degradations, we revisit recent
state of the art methods for RS and blur video frame interpo-
lation. By incorporating the advantages of two paradigms for
RS correction and motion deblurring, we propose our PMB-
Net that decouples the task into correction and interpolation
branches with a mutual boosting manner.
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Extended Figure A.1: Architecture of some modules in PMB-
Net. (a) Implementation details of BFP module. (b) Deformable
attention layer. (c) Residual dense block.

Beside the core parts demonstrated in the main
manuscript, we present the more architecture details of imple-
mentation. Following the classical bidirectional flow estima-
tion, we construct our BFP module as shown in Fig. A.1(a).
Similar to [1], we exploit the SOTA structure of nonwarping
deblurring, combined with the multi-input and multi-output
strategy to implement our NWD module that can handle
multi-scale blur with low computation loads. Asymmetric
feature fusion (AFF) is also used to promote propagation
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Extended Figure A.2: Data samples of different degradations
under the same scene from our RD-VFI. On the left, original
images are on the top row and corresponding difference maps
computed with the HS frame are at bottom.

of information flow between encoders and decoders. The
deformable attention layer in Fig. A.1(b) is exploited to fuse
the corrected frames from two streams and we use residual
dense layer [4] as our building block in contextual module,
which is shown in Fig. A.1(c).

A.2. Construction of Imaging system

Inspired by recent co-axis optical settings of [9, 11], we
construct a quad-axis imaging system to collect realistic
dataset of strictly aligned RS, RSGR, GS and high speed
videos. We first fix the RS camera, and adjust the orientation
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Extended Figure A.3: Synthetic method. The notation B[k] denotes extracting the k-th row from frame B

and position of the other three cameras by examining the
residual images of a checker pattern. We pay special atten-
tion to the first scan-line of the RS camera and the RSGR
camera, and make sure they are rigorously aligned. This
is to preclude motion-related misalignment caused by the
time delay between pixel rows of the RS camera (and RSGR
camera). However, to achieve this accurate alignment for all
four cameras in all directions is extremely difficult, due to
complexity of the quad-axis system. We then fix all compo-
nents and calibrate the alignment of four cameras by using
three homographies, of which the close-loop constraint is
considered. Since the three beamsplitters will reduce incom-
ing light to a quarter, we capture our dataset in a sunny day
so that all images are bright enough.

As for the HS camera, BTRAN CS-700C, it is an air-
forced cooling camera with a SONY IMX426 sensor inside.
The noise level is very low because of the following two
reasons. First, IMX426 sensor has a large pitch size of 9um
× 9um, by combining four 4.5um × 4.5um subpixels at the
circuit level. This greatly enhances its sensitivity and reduces
its noise level. Second, we cool the sensor temperature to 0
degree Celsius, which can further reduce temperature-related
noise. So We believe that the HS can be regarded as ground
truth with confidence.

Considering the feasibility of proposed set-up, the used
object lens is FUJINON HF12.5HA-1S, with a focal length
of 12.5mm, allowing 2/3 inch sensor. The active image
resolution is 640x480, that is, 5.7mm × 4.3 mm, given the
effective pitch size of 9um × 9um. Since the relay lens
has a ratio of 1:1, the actual angle of view is 26.1 degrees
(horizontal) and 19.5 degrees (vertical). At a distance of 10m,
the field of view is 4.6m (horizontal) and 3.4m (vertical). So,

we believe this setting is practical. Moreover, lens distortion
can be an issue when coupled with RS effects, yet we tried
to alleviate this by using a high-quality FUJINON lens.

A.3. Experimental Data

A.3.1 RD-VFI Dataset

We have elaborated the collection process of our real data,
RD-VFI in Section 3. By our quad-axis imaging system, we
collected 133 video quadruples and each quadruple has 60×3
degraded frames and 600 sharp HS frames. The presented
data samples of RD-VFI are in Fig. A.2. In difference map,
the black area denotes larger differences while smaller one is
in gray. Notably, the RS has sharper content with tilt effects.
Blur and brightness of RSGR are highly related to image
rows which is quite different with row-independent blur in
GS images.

A.3.2 GOPRO-VFI Dataset

Although, we collected real-world data to contrast effects
of different shutter mode induced degradations towards VFI.
As complementary part, we also validated the findings on
synthetic data, GOPRO-VFI. Following the convention [8,
10, 1], synthesis process is also grounded on GOPRO data [7]
consisting of 33 videos with resolution of 1280× 720. Each
video clip contains about 1200 consecutive frames at 240fps.
For benefits of generating more realistic effects, GOPRO
is firstly interpolated at ×64 using an off-the-shelf video
interpolation algorithm [5].

Fig. A.3 illustrates our synthesizing method. The RS
videos are synthesized by sequentially copying a row of pix-



els from high-speed videos and blur generated by averaging
them, as in previous works [6, 10]. The RSGR synthesizing
process is similar to that of bur, but has two different parts: 1)
Different rows of an RSGR frame are contributed by variant
numbers of high-speed frames; 2) All used HS frames except
for the first one are multiplied by a factor δ, which deter-
mines the ratio between readout time and the first scanline’s
exposure duration. The generation process of RS, RSGR and
blur videos are strictly aligned to each frame ensuring they
capture identical contents of the scene. In practice, we cen-
trally crop frames to 512, and set T = τ = 512, δ = 0.001.
Finally, we have 33 videos with three degradation counter-
parts and corresponding high-speed frames. Fig. A.4 exhibits
some examples of GOPRO-VFI dataset.
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Extended Figure A.4: Data samples of different degradations
under the same scene from our GOPRO-VFI.

B. Additional Results
B.1. Experimental Results on GOPRO-VFI

As supplemental demonstration of conclusion drawn on
real-data RD-VFI, we also conduct experiments on synthetic
dataset GOPRO-VFI. The qualitative and quantitative results
are presented in Fig. A.5 and Tab. A.1, Tab. A.2.

B.2. Video Reconstruction of Compared Methods

In Fig.6, we present the reconstructed consecutive
frames of our PMBNet. Here, the corresponding coun-
terparts of DeMFI [8], RSSR [2] and CVR [3] are shown

in Fig. B.6, Fig. B.7 and Fig. B.8, respectively.

B.3. Additional Qualitative Results

We present additional qualitative comparisons on RD-VFI
dataset in Fig. B.9 – Fig. B.13.
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Extended Table A.1: Quantitative comparisons on RS and RSGR mode of GOPRO-VFI dataset. We compare our model with
state-of-the-art methods for degraded video frame interpolation. The performance is measured with mean PSNR, SSIM and LPIPS. The
numbers in bold represent the best performance. To better compare all methods, we provide the evaluation metrics of correction, VFI (8
times interpolation) and average. B0, B1 denote initial performance of inputs. Correction metrics are computed from B0, B1 and S0, S1

while interpolation part is obtained by averaging all intermediate frames St.

Methods
RS Mode RSGR Mode

Correction VFI (×8) Average Correction VFI (×8) Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

B0, B1 22.95 0.8167 0.1649 - - - - - - 18.05 0.7271 0.1941 - - - - - -
RSSR [2] 23.41 0.8300 0.0641 23.05 0.8202 0.0893 23.13 0.8224 0.0837 19.24 0.7552 0.0989 19.13 0.7582 0.1233 19.15 0.7575 0.1179
CVR [3] 23.51 0.8339 0.0796 23.51 0.8340 0.0803 23.51 0.8340 0.0801 17.59 0.6612 0.1856 17.41 0.6504 0.1895 17.45 0.6528 0.1886
DeMFI [8] 23.46 0.8277 0.1348 23.42 0.8258 0.1535 23.43 0.8262 0.1494 22.11 0.7980 0.2310 22.46 0.8139 0.2003 22.38 0.8104 0.2071
PMBNet 24.06 0.8471 0.1158 23.98 0.8450 0.1199 24.00 0.8455 0.1190 23.44 0.8051 0.2583 23.87 0.8203 0.2357 23.77 0.8169 0.2407

Extended Table A.2: Quantita-
tive comparisons on blur mode
of GOPRO-VFI dataset.

Method Deblurring VFI (x8) Average

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

B0, B1 26.80 0.8810 0.2292 - - - - - -
RSSR [2] 26.81 0.8805 0.2293 25.83 0.8643 0.2532 26.05 0.8679 0.2479
CVR [3] 26.51 0.8751 0.1787 26.32 0.8724 0.1786 26.36 0.8730 0.1786
DeMFI [8] 27.73 0.9007 0.1435 27.57 0.8993 0.1367 27.61 0.8996 0.1382
PMBNet 31.52 0.9442 0.0817 31.26 0.9421 0.0795 31.32 0.9426 0.0800

RSSR CVR DeMFI PMBNet GTB0&B1(overlayed)

Blur

RSGR

RS

Extended Figure A.5: Visual comparison on GOPRO-VFI. We compare VFI results by different methods with RS, RSGR and GS blur
degradations, respectively. In each mode, we present the results of S2/8 (top row) and S6/8 (bottom row).
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Extended Figure B.6: Reconstructed consecutive frames from two degraded inputs by using DeMFI. We present the multiple intermediate
frames at different time generated by three types of shutter induced degradations. They are temporally located at t = [0, 1) with stride of 0.1
and arranged in two rows from left to right. Best viewed in zoom.

R
S

B
lu

r
R

SG
R

Input Output

Extended Figure B.7: Reconstructed consecutive frames from two degraded inputs by using RSSR. We present the multiple intermediate
frames at different time generated by three types of shutter induced degradations. They are temporally located at t = [0, 1) with stride of 0.1
and arranged in two rows from left to right. Best viewed in zoom.
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Extended Figure B.8: Reconstructed consecutive frames from two degraded inputs by using CVR. We present the multiple intermediate
frames at different time generated by three types of shutter induced degradations. They are temporally located at t = [0, 1) with stride of 0.1
and arranged in two rows from left to right. Best viewed in zoom.
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Extended Figure B.9: Additional qualitative comparisons on blur mode of RD-VFI.
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Extended Figure B.10: Additional qualitative comparisons on RS mode of RD-VFI.
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Extended Figure B.11: Additional qualitative comparisons on RSGR mode of RD-VFI.
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Extended Figure B.12: Additional qualitative comparisons on blur mode of RD-VFI.
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Extended Figure B.13: Additional qualitative comparisons on RSGR mode of RD-VFI.
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Extended Figure B.14: Additional qualitative comparisons on RS mode of RD-VFI.


