Appendix of Paper: Uncertainty-guided Learning for Improving Image Manipulation Detection

Kaixiang Ji¹ Feng Chen¹ Xin Guo¹ Yadong Xu² Jian Wang^{1*} Jingdong Chen¹ ¹ Ant Group ² Tsinghua University

1. Feature Extractor

It is worth noting that our proposed UEN is applicable to other segmentation-based image manipulation detection methods. Without loss of generality, we present a feature extractor with a general design. Specifically, we adopt HRNetV2 [2] as a basic RGB branch backbone network. The main body of HRNetV2 comprises multiple blocks and is shown in Figure 1. We denote f_{sr} as one block in the s-th stage and r is the resolution index. The RGB branch consists of 4 representations: $\{f_{sr}^{RGB}; s \in$ $\{1, 2, 3, 4\}, r \in \{1, 2, 3, 4\}$. The input resolution is $\frac{1}{4}$ of the original image resolution because of a preceding stem ahead of f_{11} which comprises two 3×3 convolutions with stride 2. The resolution of index r is $\frac{1}{2^{r+1}}$ of the original resolution. SRM [3] and resampling feature [1] have shown incredible performance, so we add an SRM branch and a resampling branch parallelly. For the SRM branch, we first pass the input image through an SRM layer, accompanied by two consecutive 3×3 convolution layers with stride 2. Therefore, the SRM branch starts with $\frac{1}{4}$ resolution. The SRM branch consists of 4 representations: $\{f_{sr}^{SRM}; s \in \{1, 2, 3, 4\}, r \in \{1, 2, 3, 4\}\}$. For the resampling branch, following [1], we extract the resampling feature from 32×32 non-overlapping patches. Thus, resampling branch starts with $\frac{1}{32}$ resolution, and consists of 1 representation: $\{f_{sr}^{Resampling}; s \in \{4\}, r \in \{4\}\}$. The output embeddings of each branch in the 4-th stage are all concatenated at the corresponding resolution, and the representation head remains consistent with HRNetV2 except for the number of channels.

References

 Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj, B. S. Manjunath, and Amit K. Roy-Chowdhury. Hybrid lstm and encoder-decoder architecture for detection of image forgeries. *IEEE TIP*, 28(7):3286–3300, 2019.

Figure 1: Structure of the RGB stream backbone network.

- [2] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation learning for visual recognition. *IEEE TPAMI*, 43(10):3349–3364, 2021.
- [3] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis. Learning rich features for image manipulation detection. In *CVPR*, pages 1053–1061, 2018.

^{*}Corresponding author: bobblair.wj@antgroup.com