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1. Case Study of Causal Confusion
As discussed in the introduction of the paper, behavior

cloning based methods suffer from the inertia issue [3]. As
shown in Fig. 1, at the intersection, if the ego vehicle stops
at the front of the line, other vehicles have to wait for its
movement. However, since all surrounding vehicles do not
move, the ego vehicle would not move since it learns the
improper correlation. This is a typical example of causal
confusion.

In TeacherAdapter, there is no such situation at all. The
route mask in the BEV segmentation is generated by draw-
ing instead of prediction and is fed into frozen the teacher
model. Thus, the model naturally has the tendency to move.
By comparing with the Unfrozen Teacher Model variant in
Table 5 in the paper and Action variant in Table 6 in the
paper , we could find that TeacherAdapter has much higher
route completion (RC) score which demonstrates the supe-
riority of utilizing the knowledge within the teacher model
over behavior cloning. Also, choosing all learning targets of
the student model except Action in Table 6 in the paper have
high route completion since they all use part of the teacher
model.

In summary, by adopting the frozen teacher model for
decision-making, the causal confusion issue is avoided and
the student model could focus on feature extraction and per-
ception learning. However, there are still some failure cases
under this paradigm and we give a thorough investigation of
them in the supplemental materials.

2. Implementation Details
Since an end-to-end autonomous driving model is a large

system, we provide details of our implementation in terms
of data collection, model configuration, training hyper-
parameters, and data augmentation. We will make the code

and model publicly available.

2.1. Data Collection

We use Roach [18] as the expert with a collision detector
for emergency stop similar to [16]. We set the following
sensors:

We set four cameras with field of view (FOV) 150◦:
Front (x=1.5, y=0.0, z=2.5, yaw=0◦), Left (x=0.0, y=-0.3,
z=2.5,yaw=−90◦), Right (x=0.0, y=0.3, z=2.5, yaw=90◦),
Back(x=-1.6, y=0.0, z=2.5, yaw=180◦) where the afore-
mentioned coordinate and angle are all in the ego coordinate
system. The output of each camera is a 900x1600 RGB im-
age. Since CARLA [6] simulates the Brown-Conrady dis-
tortion [4], we estimate the distortion parameter with the
code of [15]. The estimated parameter for the distortion
is (0.00888296, -0.00130899, 0.00012061, -0.00338673,
0.00028834) and we use the parameter to calibrate images
before we feed them into the neural network. We also col-
lected the depth and semantic segmentation label of images.

We set one Lidar with 64 channels, upper FOV 10◦,
lower FOV −20◦, and frequency 10Hz, following the of-
ficial protocol. We set it at (x=0.0, y=0.0, z=2.5, yaw=0◦).

We set an IMU to estimate the yaw angle, acceleration,
and angular velocity of the ego vehicle. We set a GPS to
estimate current world coordinate of the ego vehicle and a
speedometer to estimate current speed of the ego vehicle.

Following the official setting, we also save the target
point which might be hundreds meters away as well high-
level commands (keep straight, turn left, turn right, etc) pro-
vided by the protocol.

To conduct feature alignment, we collect feature maps of
Roach at different layers. To conduct action guidance, we
store the final action and whether the learning-based model
is overridden by the rules.

We convert all raw data into the ego coordinate system.

1

https://github.com/OpenDriveLab/DriveAdapter


Front View BEV View Predicted BEV Segmentation

Figure 1: Visualization of the inertia issue where the behavior cloning-based agents often fail. The agent fails to proceed
despite the green traffic light, blocking the other car behind.

2.2. Model Configuration

Our code is based on OpenMMLab [5] with Py-
torch [12], where we use their official implementation of
backbones and cooresponding ImageNet pretrained weights
if applicable. We use ResNet50 [7] as the image back-
bone. We use the PAFPN [10] to obtain the multi-scale
image features. As for the LSS [13] and depth module, we
adopt the code from [9]. We use a U-Net [14]-like struc-
ture for the image semantic segmentation, similar to [1, 3].
We downsample all images to 450x800 to save GPU mem-
ory. For the Lidar model, we use the SECOND [17] im-
plemented by mmdetection3D which consists of HardSim-
pleVFE, SparseEncoder, SECOND, and SECONDFPN. We
use 2 frames as the input. The BEV grid of both modalities
is 256x256 and the scale is (Front=36.8m, Back=-14.4m,
Left=-25.6m, Right=25.6m). We conduct the BEV feautres
of the two modalities and use a series of CNN to fuse them.
Finally, we only keep the center 192x192 to conduct BEV
segmentation which matches with the input of Roach. To
capture the dynamics of surrounding agents so that we could
segment past agents’ position, in both Lidar (SECOND) and
camera backbones (LSS), we stack 1 extra history frame,
which means the input contains two frames [-1, 0]. Specif-
ically, in SECOND, we simply stack all point clouds and
add a additional channel to indicate the time-step. In LSS,
we transformer the history BEV feature into the current ego
coordinate system and concate it with current BEV feature
and finally feed them into Conv layers.

As for the BEV segmentation, Roach’s privileged inputs
have 24 types: road mask, route mask, lane mask, vehicle
mask (-3, -2, -1, 0), pedestrian mask (-3, -2, -1, 0), traf-
fic light mask (-3, -2, -1, 0) where (-3, -2, -1, 0) denotes
the history timestep in 2Hz. Note that lane and broken lane
are represented by 1.0 and 0.5 respectively in the lane mask.
Green, Yellow, and Red light are 0.3137, 0.6667, and 1.0 re-
spectively in the traffic light mask. To formulate the task as
BEV segmetation, we separate those mixed classes into in-
dependent classes and turn the prediction results back when

feeding into the teacher model. Additionally, since the route
information is given, it is unnecessary to predict the mask
and thus we just need to draw the route mask. We adopt
the Mask2former [2] for semantic segmentation with the
BEV feature as inputs based on their official implementa-
tion. We use only one scale (192x192), 3 encoder layers
and 6 decoder layers. .We treat each object type at each
timestep as a class and set corresponding queries to con-
duct segmentation. In the 189K frames setting, we only use
4 towns (no overlap with Town05Long and some overlap
with Longest6) to match with Roach, TCP, LAV, etc. While
in the 2M frames settings*, we use all 8 towns (overlap with
both Town05Long and Longest6). We observe more accu-
rate BEV segmentation results and less red light infraction
in 2M frames settings due to more data and seen towns.

As for the adapter module, for each 2D feature map, the
adapter is one Resnet bottleneck with SE [8]. For each 1D
feature map, the adapter is a two-layer MLP.

As for the +TCP setting, we add an MLP with the 1D
feature map of the last layer as inputs and use the trajectory
generated by the expert as labels.

The total number of parameters is 135M, the MACs is
1719G, and the inference GPU memory is around 5G.

2.3. Hyper-Parameters

We use AdamW [11] optimizer with the learning rate 1e-
4, cosine learning rate decay, effective batch size 96, and
weight decay 1e-7. We train the model for 60 epochs. For
hidden dimensions, we use 256 at most places. For loss
weights, we tune them to make sure that each loss is around
1 at the beginning of training. We apply gradient clip based
on the L2 norm with the threshold of 35.

2.4. Data Augmentation

For data augmentation which we only apply on images,
we use the random color transformation similar to [16] and
random crop before we project image features to the BEV
grid.
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